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Abstract 

This study examines implied volatility for Taiwan index options contracts considering 

and comparing two moneyness measures, tradition and delta, using asymmetric exponential 

smooth transition autoregressive (AESTAR) model proposed by Sollis (2009). Our 

moneyness categories are divided into out-of-the-money (OTM), at-the-money (ATM), and 

in-the-money (ITM) groups. We test the unit root against stationary symmetric or asymmetric 

ESTAR nonlinearity, and then test the null of symmetric ESTAR nonlinearity against 

asymmetric ESTAR nonlinearity. Finally, we examine if nonlinear mean reversion in implied 

volatility is driven by time to maturity. Our findings show that, adjustment toward implied 

volatility for ATM and ITM call options considering delta moneyness measure is 

mean-reverting and in an asymmetric nonlinear way but symmetric nonlinear mean-reverting 

for ITM put options. For comparison, asymmetric nonlinear mean reversion pattern is only 

found for OTM and ITM call options. Finally, asymmetric nonlinear mean reversion in 

implied volatility for ATM call options and OTM and ATM put options with delta moneyness 

measure is strongly driven by different time to maturity. 
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1. Introduction 

IMPLIED VOLATILITY calculated by Black-Scholes (1973) option pricing model is 

the unique volatility parameter for which the Bulack-Scholes formula recovers the option 

price. It tends to be more responsive to current market conditions than historical volatility, 

because it reflects the perceptions of numerous market participants about the market risk 

(Christensena and Prabhala, 1998; Fleming, 1998; Szakmary et al., 2003; Borovkova and 

Permana, 2009).
1
 On the other hand, investors’ uncertainty about the economic fundamentals 

(e.g., dividends) affects implied volatility (David and Veronesi, 2002; Guidolin and 

Timmerman, 2003). Therefore, understanding whether the variation in implied volatility is 

predictable can help us understand how underlying price movement changes over time 

although the empirical evidence on the predictability of implied volatility is mixed (Corrado 

and Miller, 2006; Mixon, 2007; Konstantinidi et al., 2008).
2
  

Many financial lectures examine whether price movement for underlying assets follows 

random walk or mean reverting process.
3
 Mean reversion in stock market prices have been 

extensively examined in many papers, but the empirical evidence on mean reversion in stock 

market prices is still inconclusive. Fama and French (1988) and Poterba and Summers (1988) 

document mean reversion in the U.S. stock prices and Balvers et al. (2000) report significant 

evidence of mean reversion in annual equity indexes for eighteen developed countries, while 

Lo and MacKinley (1988), Richardson and Stock (1989), and Cunado et al. (2010) yield less 

or no evidence against it. On the other hand, Nam et al. (2002) interpret the asymmetrical 

mean reversion as evidence of stock market overreaction, suggesting negative returns on 

average reverted more quickly, with a greater reverting magnitude, to positive returns than 

positive returns revert to negative returns. In the study of Bali et al. (2008), they find that the 

speed of mean reversion is significantly higher during the large falls of the market.  

Vast research on mean reversion in price movement concentrates on the univariate 

properties of the series by using traditional unit root tests such as the Augmented Dickey and 

Fuller (ADF, Dickey and Fuller, 1979, 1981), Phillips and Perron (PP, Phillips and Perron, 

                                                        
1
 It is therefore not surprising that predictions of a stock’s future volatility based on implied volatilities tend to 
be slightly better than those based on historical volatilities. 

2 Mixon (2007) shows that the slope of at-the-money implied volatility over different maturities has predictive 
ability for future short-dated implied volatility, although not to the extent predicted by the expectations 
hypothesis. 

3
 If stock price follows a mean reverting process, then there exists a tendency for the price level to return to its 
trend path over time and investors may be able to forecast future returns by using information on past returns. 
On the other hand, a random walk process says that any shock to stock price is permanent and there is no 
tendency for the price level to return to a trend path over time.  
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1988), and Kwiatkowski et al. (KPSS, 1992). On the other hand, the autoregression test 

introduced by Fama and French (1988) tests for mean reversion in stock prices whileas an 

alternative to the autoregression test of mean reversion is the variance-ratio test. However, 

Taylor (2001) points out that the power of the conventional ADF test is poor if the series 

under investigation follow a nonlinear threshold process. A non-linear exponential smooth 

transition autoregressive (hereafter ESTAR) model, provided by Granger and Terasvirta 

(1993), is useful in modeling non-linear economic relationships. Some studies have examined 

nonlinear mean-reversion by retaining the null hypothesis of nonstationarity against the 

alternative of stationary but nonlinear ESTAR processes (Taylor and Peel, 2000; Taylor et al., 

2001; Kapetanios et al., 2003; McMillan, 2007; Kim, et al., 2010; Coudert et al. 2011; Sollis, 

2011). Others further have examined asymmetric nonlinear mean reversion using asymmetric 

ESTAR (hereafter AESTAR) processes (Sollis et al., 2002; McMillan, 2007; Sollis, 2009). 

Despite in the econometrics literature in the underlying index return data mean reversion 

of volatility is observed and captured by stochastic volatility (SV) models, few studies 

consider mean reversion in derivatives price movement, especially for implied volatility. 

Earlier empirical works take into account implied volatility in order to study mean reversion 

and document that implied volatility is found to be strongly mean-reverting (Merville and 

Piptea, 1989). Wagner and Szimayer (2004) further find the evidence of significant positive 

jumps in implied volatilities by estimating an autonomous mean-reverting jump-diffusion 

process. Recently, Wang (2007) reports that short-maturity options overreact to the dynamics 

of underlying assets, suggesting that mean reversion coefficients decrease in maturity. On the 

contrary, Stein (1989) assumes the mean reversion process for volatility and reports that 

long-maturity options tend to overreact to changes in the implied volatility of short-maturity 

options. These preceding studies only examine mean reversion in implied volatility, not 

nonlinear mean reversion. Specifically, little research applies the asymmetric ESTAR 

functional form to examine nonlinear mean reversion in implied volatility. In this paper, our 

findings gap the related literatures. 

The Taiwan Futures Exchange (TAIFEX) introduced the Taiwan index options (TXO) in 

December 24, 2001. The TXO market is the third most actively traded market in Asia and the 

sixth most actively traded market in the world in terms of volume traded, with annual trading 

volume reaching 97 million contracts in 2010.
4
 Moreover, the Taiwan stock and derivative 

markets are, due to its high liquidity and transparency, often used by international institutional 

investors and investment banks as a temporary surrogate for reducing or increasing exposure 

to other Asian markets. This particular role adds to the significance of the Taiwan stock and 

                                                        
4
 For detailed statistics, see the Statistics Section and Derivatives Market Survey available at the World 
Federation of Exchanges website, http://www.world-exchanges.org/. 
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derivative markets. Another motivation for our examination of the Taiwan stock and 

derivative markets comes from the investigation of this market in numerous prior studies. 

Therefore, on an examination of (a)symmetric nonlinear mean reversion in implied volatility, 

this paper considers Taiwan index options.  

This study follows Sollis (2009) to test the unit root hypothesis against the alternative of 

stationary symmetric or asymmetric ESTAR nonlinearity, and then test the null of symmetric 

ESTAR nonlinearity against the alternative of asymmetric ESTAR nonlinearity using the 

AESTAR model. We examine nonlinear mean reversion in implied volatility across three 

moneyness categories divided into out-of-the-money (OTM), at-the-money (ATM), and 

in-the-money (ITM) groups with the traditional moneyness (S/K) measures and delta 

moneyness measure proposed by Bollen and Whaley (2004). In addition, we examine if 

nonlinear mean reversion in implied volatility is driven by maturities measure. Our findings 

shed valuable lights on nonlinear mean reversion in implied volatility. It helps us analyzing 

and realizing the information behind implied volatility. 

Our findings show that, by considering delta moneyness measure, adjustment toward 

implied volatility for the ATM and ITM call options is mean-reverting and in an asymmetric 

nonlinear way while symmetric nonlinear mean-reverting for ITM put options. For 

comparison considering S/K moneyness measure, OTM and ITM call options present not only 

nonlinear stationery but also asymmetric ESTAR nonlinearity. To understand whether 

nonlinear mean reversion in implied volatility is driven by maturity, our findings show that 

strong adjustment toward implied volatility for ATM call options and OTM and ATM put 

options for the period during one day to the maturity is mean-reverting and in an asymmetric 

nonlinear way. On the other hand, for the period during one day to the maturity, asymmetric 

nonlinear mean reversion in implied volatility with delta moneyness measure is more 

significant than traditional moneyness measure. 

Our paper is organized as follows. Section 2 introduces the econometric approaches used 

in this paper and describes the data. Section 3 presents the empirical results. Section 4 

provides the conclusion. 

2. The Nonlinear Asymmetric ESTAR Framework and Data 

The nonlinear asymmetric ESTAR framework 

To examine nonlinear mean reversion in implied volatility for Taiwan index options, we 

follow Sollis (2009) to apply an extended version of the ESTAR model allowing for 

symmetric or asymmetric nonlinear adjustment to test the unit root hypothesis against the 

alternative hypothesis of globally stationary symmetric or asymmetric ESTAR nonlinearity 

with a unit root. The extended ESTAR model proposed by Sollis (2009) is regarded as an 
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asymmetric ESTAR (AESTAR) model, employing both an exponential function (Gt) and a 

logistic function (St), as follows. 

 ∆yt = Gt(γ
1
, yt−1) {St(γ

2
, yt−1)ρ

1
+ [1 − St(γ

2
, yt−1)]ρ2

} yt−1 + εt             (1) 

 Gt(γ
1
, yt−1) = 1 − exp[−γ

1
(yt−1

2 )]       γ
1

≥ 0                   (2) 

 St(γ
2
, yt−1) = {1 + exp[−γ

2
(yt−1)]}

−1
  γ

2
≥ 0                   (3) 

where εt~iid(0, σ2). Sollis (2009) indicates that global stationarity requires ρ1<0, ρ2<0, γ1>0.
5
 

In addition, the composite function in Eq. (1) can be regarded as first-order AR parameter and 

is symmetric or asymmetric depending on the values of ρ
1
 and ρ

2
. Thus, for a particular 

value of (ρ2 − ρ1), γ2 ultimately controls the degree of asymmetry.
6
 This turns out to be a 

useful feature of the model for deriving a test of symmetric ESTAR nonlinearity versus 

asymmetric ESTAR nonlinearity. 

As with the original symmetric ESTAR model, the AESTAR model (Eq. (1)) can be 

extended to allow for higher-order dynamics, as follow. 

 ∆yt = Gt(γ1, yt−1)*St(γ2, yt−1)ρ1 + ,1 − St(γ2, yt−1)-ρ2+ yt−1 + ∑ κi
k
j=1 ∆yt−i + εt  (4) 

However, the Eq. (4) can not directly test the unit root hypothesis against the alternative 

hypothesis of globally stationary symmetric or asymmetric ESTAR nonlinearity with a unit 

root. The Eq. (4), in which transitions in the higher-order dynamic terms are not considered 

(Sollis et al., 2002; Kapetanios et al., 2003; Park and Shintani, 2005; Sollis, 2009), needs to 

transform into another equation. Therefore, the transformation of Eq. (4) is conducted by 

three procedures. First, assuming k=0 in Eq. (4), replacing Gt(γ1, yt−1) in Eq. (4) with a 

first-order Taylor expansion around γ1=0 gives 

 ∆yt = ρ
1
γ
1
yt−1

3 St(γ
2
, yt−1) + ρ

2
γ
1
yt−1

3 [1 − St(γ
2
, yt−1)]  + η

t
                  (5) 

where ηt = εt + Rt, with Rt denoting the remainder from the Taylor expansion. Second, to 

simplify the model further by taking a Taylor expansion of the logistic function in Eq. (5), 

replacing St(γ
2
, yt−1)  with St

∗(γ
2
, yt−1) = St(γ

2
, yt−1) − 0.5  obtains St

∗(0, yt−1) = 0 . 

                                                        
5
 Assuming that γ

1
> 0 and γ

2
→ ∞, as yt−1 moves from zero toward −∞ then since St(γ

2
, yt−1) → ∞, an 

ESTAR transition occurs between the central regime model, ∆yt = εt, and the outer-regime model, ∆yt =
ρ
1
yt−1 + εt, with γ1 determining the speed of the transition. Note that Eq. (1) nests the symmetric ESTAR 

specification of Kapetanios et al. (2003) if ρ
1

= ρ
2

= ρ. On the other hand, if ρ1 ≠ ρ2, the autoregressive 

adjustment is asymmetric either side of the attractor. 
6 However, assuming ρ1≠ρ2, asymmetry can also occur for small and moderate values of γ2, which generate a 

gradual transition of St(γ
2
, yt−1)  between its limiting values. For γ2→0, it follows that St(γ2, yt−1) →

0.5 ∀t, and consequently the composite function becomes symmetric irrespective of the values of  ρ1  and ρ2. 
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Substituting in Eq. (5) gives 

 ∆yt = ρ1
∗γ1yt−1

3 St
∗(γ2, yt−1) + ρ2

∗γ1yt−1
3 ,1 − St

∗(γ2, yt−1)-  + ηt                (6) 

where ρ
1
∗  and ρ

2
∗  are linear functions of ρ

1
  and ρ

2
. Eq. (6) allows for the same pattern of 

nonlinearity as Eq. (5). Third, on taking a Taylor expansion of St
∗(γ

2
, yt−1) in Eq. (6) around 

γ
2

= 0, the resulting model is  

 ∆yt = a(ρ
1
∗ − ρ

2
∗)γ

1
γ
2
yt−1

4 + ρ
2
∗γ

1
yt−1

3  + η
t
                                (7) 

Without loss of generality, we rewrite Eq. (8) as 

 ∆yt = ϕ1yt−1
3 + ϕ2yt−1

4  + ∑ κi
k
j=1 ∆yt−i + ηt                               (8) 

where ϕ1 = ρ
2
∗
γ
1

 and ϕ2 = a(ρ
1
∗ − ρ

2
∗)γ

1
γ
2

. The null hypothesis H0: γ1=0 in Eq. (4) 

becomes H0: ϕ1 = ϕ2 = 0 in the AESTAR model (Eq. (8)). If the unit root hypothesis has 

been rejected against the alternative of stationary symmetric or asymmetric ESTAR 

nonlinearity, the null by hypothesis of symmetric ESTAR nonlinearity can then be tested 

against the alternative of asymmetric ESTAR nonlinearity using the AESTAR model (Eq. (8)) 

by testing H0: ϕ2 = 0 against H0: ϕ2 ≠ 0 with a standard F-test. 

Due to standard critical values cannot being used for this testing, Sollis (2009) derive 

the asymptotic distribution of an F-test of H0: ϕ1 = ϕ2 = 0 in Eq. (8) and the test statistic is 

F= (R ̂ −  ) , ̂2R*∑ xtxt
 

t +−1R -−1(R ̂ −  )   .7 Assuming k=0 in Eq. (8), it follows that 

x = ,yt−1
3 , yt−1

4 -′, m=2, R is a 2×2 identity matrix,  ̂ = ,ϕ̂1, ϕ̂2-  where ϕ̂1 and ϕ̂2 are the 

LS estimates of ϕ1 and ϕ2, r = [0, 0]′, and  ̂2 is the LS estimate of σ
2
. Let FAE, FAE,μ, FAE,t 

denote the test statistics critical values of 4.241 (2.505), 6.236 (4.557), and 8.344 (6.292) for 

testing H0: ϕ1=ϕ2=0 for the zero mean, non-zero mean and deterministic trend cases 

respectively at the 1% (5%) confidence level (see Table1 in the study of Sollis, 2009). 

Our Sample Data 

To test the unit root hypothesis for implied volatility against the alternative of stationary 

symmetric or asymmetric ESTAR nonlinearity, from each observed call (Ct) or put price (Pt), 

we compute implied volatility σit by numerically solving the Black–Scholes call or put option 

pricing formula, i.e., Ct = StN(d1) − Kte
−rf,tτtN(d1 −  √τt)  or Pt = Kte

−rf,tτtN(−d1 +

 √τt) − StN(−d1) , where d1 = [log(St Kt⁄ ) + ( f,t +  t
2 2⁄ )τt]  t√τt , 𝜏𝑡  denotes the 

time to expiration, rf,t stands for the interest rate, and N(·) denotes the standard cumulative 

normal distribution function. 

                                                        
7 For standard F critical values to be applicable for this test,  ϕ1 < 0, so that under the null being tested the 

series is stationary. Therefore in practice such a test using standard F critical values is only asymptotically valid 

if the consistent LS estimate of ϕ1 is negative. 
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Our sample consists of daily quotes and trades for nearby Taiwan index options (TXO) 

and underlying spot index. The sample period is December 24, 2001 to February 22, 2010. 

The sample was obtained from the Taiwan Economic Journal (TEJ). We collect the Taiwan 

index call or put options closing prices, strike prices, and maturities as well as the spot index 

closing prices. The underlying asset is the Taiwan Stock Exchange Capitalization Weighted 

Stock Index. The call options and put options are European style. In addition, we use the 

one-month time deposit interest rate in the Bank of Taiwan, as a proxy for the risk-free rate.  

Prior studies show that an option’s moneyness is intended to reflect its likelihood of 

being in the money at expiration. Typically, moneyness is measured as the relative difference 

between the forward price of the underlying asset and the option’s exercise price, that is, S/K, 

hereafter as traditional moneyness measure. The greater (lower) the level of moneyness, the 

more likely a call (put) will be exercised at expiration. Due to moneyness affecting traders' 

choice among different options, in-the-money (ITM) options increase traders’ trading profits 

(De Jong et al., 2001; Chan et al, 2009), at-the-money options (ATM) are more liquid and 

more sensitive to volatility, and have lower bid-ask spreads than other options (Kaul et al., 

2002; Chan et al, 2009), and out-of-the-money (OTM) options play the most significant role 

in the price discovery process among of all options (Chakravarty et al., 2004; Chan et al, 

2009). Hence, if information content of options varies with options' moneyness, pooling all 

options together could result in mixed findings. 

Following Chan et al (2009), we only employ TXO options with strike prices between 

80% and 120% of the prevailing Taiwan stock index. As options with different moneyness 

have distinct liquidity, leverage effect, delta (sensitivity to spot price movements), and vega 

(sensitivity to volatility), we examine nonlinear mean reversion in the implied volatility for 

index call or puts options across different ranges of options moneyness. We define OTM call 

(put) options as options with strike prices ranging between 102 (80)% and 120 (98)% of the 

underlying asset price; ATM options as options with strike prices ranging between 98% and 

102% of the underlying asset price; and ITM call (put) options as options with strike prices 

ranging between 80 (102)% and 98 (120)% of the underlying asset price.  

However, Bollen and Whaley (2004), they argue that traditional moneyness measure, the 

ratio of underlying price over strike price (S/K), fails to account for the fact that the likelihood 

that the option will be in the money at expiration also depends heavily on the volatility rate of 

the underlying asset and the time remaining to expiration of the option. To solve the problem, 

they use the option’s delta where delta is sensitive to the volatility of the underlying asset as 

well as the option’s time to expiration. In this paper, contrast to results using traditional 

moneyness measure, we follow Bollen and Whaley (2004) to apply the delta moneyness 

measure. Based on deltas proposed by Bollen and Whaley (2004), options are then placed into 
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three moneyness categories. We define OTM call (put) options as options with absolute delta 

ranging between 0.125 and 0.375; ATM options as options with absolute delta ranging 

between 0.375 and 0.625; and ITM call (put) options as options with absolute delta ranging 

between 0.625 and 0.875. Note that all of the delta pairings for the calls and puts reflect the 

fact that buying (selling) a call and selling (buying) a put is tantamount to buying (selling) the 

underlying asset. A put option with a delta of −0.375 should have the same implied volatility 

as a call option with a delta of 0.625 by virtue of put–call parity. Options with absolute deltas 

below 0.125 and above 0.875 are excluded. 

3. Empirical results 

To provide an analytical framework for our analysis, this paper follows Sollis (2009) to 

test the unit root hypothesis for implied volatility against the alternative of stationary 

symmetric or asymmetric ESTAR nonlinearity.  

 

Table1 Descriptive statistics of implied volatility for Taiwan Index options  

MN measure C/P moneyness Mean StdDev Max Min Skew 

Delta  calls OTM 0.219 0.113 0.487 0.036 0.158 

  ATM 0.455 0.175 1.513 0.061 1.178 

  ITM 1.340 0.586 2.000 0.102 -0.854 

 puts OTM 0.319 0.131 1.178 0.003 1.272 

  ATM 0.318 0.140 1.505 0.032 1.644 

  ITM 0.412 0.256 2.000 0.075 1.839 

S/K  calls OTM 0.088 0.135 0.801 0.000 1.273 

  ATM 0.268 0.108 1.056 0.000 0.820 

  ITM 0.637 0.316 2.000 0.000 1.091 

 puts OTM 0.316 0.126 1.241 0.131 1.538 

  ATM 0.303 0.138 1.380 0.000 1.328 

  ITM 0.303 0.171 1.416 0.000 0.681 

 

Table1 reports descriptive statistics of implied volatility with different moneyness 

measures for the Taiwan index call or put options. For call options with delta moneyness 

measure, the results indicate a rather clear smirk pattern, with higher for in-the-money calls 

than for at- and out-of-the-money calls. By contrast, also put option volatilities are analyzed, 

the results indicate a rather clear U-shaped smile pattern, with the lowest average implied 

volatility found for the at-the-money options. For comparison, with traditional moneyness 

measure, the pattern is similar when considering call and put option volatility.
8
  

                                                        
8
 Previous studies document sizable and persistent cross-sectional differences in implied volatility. Implied 



8 
 

On the other hand, from this Table, it is to note that implied volatility of in-the-money 

call options for each moneyness measure is higher than the implied volatility of comparable 

calls or puts. In addition, in-the-money call or put options have higher standard deviation of 

implied volatilities than at- and out-of-the-money calls or puts. It suggests that investors use 

in-the-money options to increase traders’ trading profits (De Jong et al., 2001; Chan et al, 

2009). Furthermore, Calls are usually traded more frequently than puts, and this might lead to 

a more thorough pricing of in-the-money and out-of-the-money calls than of corresponding 

puts. The difference in implied volatilities between corresponding puts and calls in Table 1 is 

less than 1%. Our findings are consistent with Engström (2002).  

 

 

Figure1(A) The plot on implied volatility of options with delta moneyness measure 

 

                                                                                                                                                                             
volatilities on stock and stock index options form a smile pattern prior to the October 1987 market crash 
where options that are deep ITM or OTM have higher implied volatilities than ATM options. After the crash, a 
smirk pattern appears in the stock and stock index options where the implied volatilities decrease 
monotonically as the exercise price increases (Dumas et al., 1998; Ederington and Guan, 2005). 
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Figure1(B) The plot on implied volatility of options with traditional moneyness measure 

 

Table2 Nonlinear unitroot tests for implied volatility based on AESTAR model 

∆yt = ϕ1yt−1
3 + ϕ2yt−1

4  + Σ∆κiyt−i + ηt 

MN measure C/P moneyness ϕ1 ϕ2 H0: ϕ1 = ϕ2 = 0 H0: ϕ2 = 0 

Delta  calls OTM 0.190 -0.775 2.291 0.575 

  ATM -0.003 0.295 101.507**  6.927* 

  ITM -0.089 0.053  79.729**  72.696** 

 puts OTM -0.041 -0.007 2.172 0.014 

  ATM -0.023 -0.034 1.925 3.762 

  ITM 0.024 -0.067   6.307** 0.654 

S/K  calls OTM 0.183 -0.732 18.889** 14.908** 

  ATM -0.220 0.206 2.100 0.971 

  ITM 0.395 -0.349  52.421**  78.577** 

 puts OTM -0.042 -0.018 1.983 0.088 

  ATM -0.065 0.013 1.443 0.075 

  ITM -0.091 0.013 2.664 0.039 

Notes: The FAE,μ statistic for the null hypothesis of ϕ1 = ϕ2 = 0 are tabulated at Table 1of Sollis (2009). A 

feature of the AESTAR model proposed is that if the unit root hypothesis has been rejected against the 

alternative of stationary symmetric or asymmetric ESTAR nonlinearity, the null hypothesis of ϕ2 = 0 

(symmetric ESTAR nonlinearity) can then be tested (following a standard F distribution) against the 
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alternative of asymmetric ESTAR nonlinearity.* and ** indicate significance at the 5% and 1% 

confidence level, respectively. 

 

Figure1(A)(B) plot the series of implied volatilities on calls and puts with different 

moneyness considering delta and traditional moneyness measures. They seem to act 

nonlinearly. Note that callat (putat), callin (putin), and callout (putout) represent ATM, ITM, 

and OTM call (put) options, respectively. 

We apply AESTAR nonlinear unit root test proposed by Sollis (2009) to examine 

(a)symmetric patterns for implied volatility for Taiwan index calls and puts. Table2 presents 

results of AESTAR nonlinear unit root test. In the study of Sollis (2009), a feature of the 

AESTAR model proposed is that if the unit root hypothesis of ϕ1 = ϕ2 = 0 has been rejected 

against the alternative of stationary symmetric or asymmetric ESTAR nonlinearity, the null 

hypothesis of ϕ2 = 0 (symmetric ESTAR nonlinearity) can then be tested (following a 

standard F distribution) against the alternative of asymmetric ESTAR nonlinearity. 

In Table2, to test the unit root hypothesis of ϕ1 = ϕ2 = 0 against the alternative of 

stationary symmetric or asymmetric ESTAR nonlinearity, our results present the existence of 

nonlinear stationery for the at-the-money and in-the-money call option as well as the 

in-the-money put option with delta moneyness measure. It implies the existence of nonlinear 

mean reversion in implied volatility on the at-the-money and in-the-money call option as well 

as the in-the-money put option. We further test he null hypothesis of ϕ2 = 0 (symmetric 

ESTAR nonlinearity) against the alternative of asymmetric ESTAR nonlinearity. Specifically, 

we find that the at-the-money and in-the-money call option exhibit asymmetric nonlinear 

mean reversion but the in-the-money put option exhibits symmetric nonlinear mean reversion.  

For comparison considering traditional moneyness measure, our findings only show that 

the out-of-the-money and in-the-money call option present the existence of nonlinear 

stationery, suggesting mean reverting process. To further test the null hypothesis of ϕ2 = 0 

(symmetric ESTAR nonlinearity) against the alternative of asymmetric ESTAR nonlinearity, 

we find that the out-of-the-money and in-the-money call option present asymmetric ESTAR 

nonlinearity. 
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(a) ESTAR model: ∆𝑦𝑡 = 𝐺𝑡(241.995, 𝑦𝑡−1)(−0.385) 

 

 

(b) AESTAR model: 𝑦𝑡 = 𝐺𝑡(5 3.5, 𝑦𝑡−1)* 𝑡(−10 4. 3 , 𝑦𝑡−1)(−0.38) + ,1 −  𝑡(−10 4. 3 , 𝑦𝑡−1)-(−0.2)+ 

Figure2 Function plot for the in-the- money call option with delta moneyness measure:  

(a) ESTAR model and (b) AESTAR model 

 

When a rejection is obtained from FAE,μ it is interesting to estimate the AESTAR model 

in its raw form (Eq. (4)) and compare graphically with the ESTAR model in its raw form 

proposed by Kapetanios, et al. (2003) (∆yt= Gt(γ1,yt-1)ρyt-1+εt). We present results for the case 

of the in-the-money call option with delta moneyness measure. The fitted exponential 

function multiplied by the nonlinear AR parameter for the relevant ESTAR model, 

Gt(241.995, yt−1)(−0.385) , is plotted in Figure2(a) against the threshold for positive 

deviations from its attractor the implied volatility yt is much more persistent than for negative 

deviations of the same absolute magnitude. The combined function (Eq. (9)) varies between 

approximately −0.2 and 0 when the implied volatility is below its attractor, but only between 

−0.38 and 0 when the implied volatility is above its attractor. This supports the strong 

rejection of symmetric ESTAR nonlinearity obtained by the second-stage test FAE,μ reported 

in Table2. Note that the conventional ESTAR model as employed by Kapetanios et al. (2003) 
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and Park and Shintani (2005) do not explicitly take account of this type of asymmetric 

behavior. 

∆𝑦𝑡 = 𝐺𝑡(5 3.5, 𝑦𝑡−1) ×  

         * 𝑡(−10 4. 3 , 𝑦𝑡−1)(−0.38) + ,1 −  𝑡(−10 4. 3 ,𝑦𝑡−1)-(−0.2)+       (9) 

Stein (1989) assumes the mean reversion process for volatility and reports that 

long-maturity options tend to overreact to changes in the implied volatility of short-maturity 

options but Wang (2007) indicates that short-maturity options overreact to the dynamics of 

underlying assets. Our findings are consistent with other findings on real exchange rate 

asymmetry (Sollis et al., 2002) and Stein (1989) and Wang (2007), indirect to supporting the 

asymmetry pattern of implied volatility.  

To understand other possible explanations on implied volatility asymmetry, we examine 

if nonlinear mean reversion in implied volatility is driven by maturities proposed by previous 

studies. The results from applying the AESTAR unit root test and the second-stage test for 

symmetric versus asymmetric ESTAR nonlinearity are given in Table3. 

 

Table3 Nonlinear unitroot tests for implied volatility based on AESTAR model,  

considering maturities 

MN 

measure 
maturity C/P moneyness ϕ1 ϕ2 H0: ϕ1 = ϕ2 = 0 H0: ϕ2 = 0 

Delta 1 calls OTM -6.922 14.784 1.811 0.009 

   ATM -0.530 0.187 164.336**   6.180** 

   ITM -0.328 0.165   3.906*  6.614* 

  puts OTM 1.264 -3.694 5387.980** 2.079 

   ATM 1.294 -4.503 2990.969** 2.820 

   ITM -0.376 0.097    25.593** 1.795 

 5 calls OTM -1.288 2.271   3.143 0.077 

   ATM -0.766 0.724    14.087**  28.002** 

   ITM -0.385 0.197    10.657**  20.666** 

  puts OTM 1.941 -5.545    12.973**   7.301** 

   ATM 1.818 -5.419    43.227**   9.986** 

   ITM -0.480 0.115  2275.181** 0.751 

 10 calls OTM 0.260 -1.229   0.493 0.077 

   ATM -0.706 0.732     6.044**  12.056** 

   ITM -0.435 0.227    23.775**  47.551** 

  puts OTM 0.609 -1.588   11.964**  12.611** 

   ATM 0.253 -1.192   18.088** 4.844 

   ITM -0.567 0.280   14.518** 0.082 

S/K 1 Calls OTM 1.000 -5.609  2.200 0.232 

   ATM -4.226 3.654   41.633**  19.060** 

   ITM 0.234 -0.145    8.900**  17.187** 
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  puts OTM 0.859 -2.771 5352.080**    6.592** 

   ATM -0.245 -2.130   793.327**  0.919 

   ITM -0.551 -0.216     6.257**  0.035 

 5 calls OTM 2.226 -8.481     4.989**  1.321 

   ATM 0.292 -0.512     6.923**  0.985 

   ITM 0.463 -4.237   2.171  4.234 

  puts OTM 1.941 -5.513    21.336**   10.806** 

   ATM 2.578 -7.669   18.953**   10.166** 

   ITM -1.482 0.728   29.982**  0.158 

 10 calls OTM 1.841 -6.256    7.733**  1.107 

   ATM 0.197 -1.897    8.565**  2.686 

   ITM 0.362 -0.521    7.443**   11.084** 

  puts OTM 0.416 -1.351   19.371**   8.010* 

   ATM 0.212 -1.099   21.127**  4.430 

   ITM -0.196 -0.629   19.493**  0.636 

Notes: The FAE,μ statistic for the null hypothesis of ϕ1 = ϕ2 = 0 are tabulated at Table 1of Sollis (2009). A 

feature of the AESTAR model proposed is that if the unit root hypothesis has been rejected against the 

alternative of stationary symmetric or asymmetric ESTAR nonlinearity, the null hypothesis of ϕ2 = 0 

(symmetric ESTAR nonlinearity) can then be tested (following a standard F distribution) against the 

alternative of asymmetric ESTAR nonlinearity.* and ** indicate significance at the 5% and 1% 

confidence level, respectively. 

 

Table3 reports the results from applying the AESTAR unit root test and the second-stage 

test for symmetric versus asymmetric ESTAR nonlinearity when examining whether 

nonlinear mean reversion in implied volatility is driven by maturities comparing with delta 

and S/K moneyness measures. We find that, on comparison of delta and S/K moneyness 

measure, rejections of the unit root hypothesis are obtained for ATM and ITM call as well as 

OTM, ATM, and ITM put options for the period during five days and ten days to the maturity 

at the 1% or 5% level of significance from the AESTAR test respectively while no rejections 

are obtained for OTM call options for the period during one day to the maturity. Except for 

the call for the period during one day to the maturity considering delta moneyness measure, 

implied volatility follows the nonlinear mean reversion process. Specifically, the ATM call 

option as well as the OTM and ATM put option for the period during one day to the maturity 

overreact to the dynamics of underlying assets as the larger magnitude of F statistics. Our 

findings are consistent with Wang (2007). On the other hand, the ITM call option for the 

period during ten days to the maturity overreacts to the dynamics of underlying assets, 

supporting with the argument of Stein (1989).  

Furthermore, the null hypothesis of symmetric ESTAR nonlinearity is rejected against 

the alternative of asymmetric ESTAR nonlinearity for ATM and ITM call options across 
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maturities. Similar results are found for OTM and ATM put options for the period during five 

days to the maturity for both delta and S/K moneyness measure. It suggests that adjustment 

toward implied volatility for the ATM and ITM call options as well as the OTM and ATM put 

options is mean-reverting and in an asymmetric nonlinear way. For example, for the period 

during one day to the maturity on comparison of delta and S/K moneyness measure, the 

magnitude of F statistics for ATM call options and OTM and ATM put options using delta 

moneyness measure are larger than S/K moneyness measure. A possible reason is that the 

probability of option will been exercised at the maturity day, which is related to the volatility 

of underlying asset and time to maturity (Bollen and Whaley, 2004). It leads to asymmetric 

nonlinear mean reversion in implied volatility, especial for ATM call options and the OTM 

and ATM put options. 

4. Conclusions 

This study follows Sollis (2009) to test the validity of implied volatility mean-reverting 

in sample of calls and puts across three moneyness categories comparing with the traditional 

moneyness (S/K) measures and delta moneyness measure proposed by Bollen and Whaley 

(2004). Three moneyness categories are divided into out-of-the-money (OTM), at-the-money 

(ATM), and in-the-money (ITM) groups. Additionally, we further examine symmetric versus 

asymmetric nonlinear patterns for implied volatility. Finally, we examine if nonlinear mean 

reversion in implied volatility is driven by maturities measure. Our sample data is the Taiwan 

index options (TXO) including call and put options and corresponding underlying index over 

December 24, 2001 to February 22, 2010.  

Our findings show that, by considering delta moneyness measure, adjustment toward 

implied volatility for the ATM and ITM call options is mean-reverting and in an asymmetric 

nonlinear way while symmetric nonlinear mean-reverting for ITM put options. For 

comparison considering S/K moneyness measure, our findings only show that the OTM and 

ITM call options present the existence of nonlinear stationery. And then we further find that 

OTM and ITM call options present asymmetric ESTAR nonlinearity. A possible reason for 

asymmetry is due to the mispricing behavior on the part of investors who overreact to certain 

market news (Nam et al, 2001). Another possible reason is the adjustment in investors’ 

expectation in response to predicted excess future volatility, supporting the persistence of a 

positive return autocorrelation (Nam et al., 2003).  

To understand whether nonlinear mean reversion in implied volatility is driven by 

maturity, our findings show that strong adjustment toward implied volatility for the ATM call 

options and OTM and ATM put options for the period during one day to the maturity is 

mean-reverting and in an asymmetric nonlinear way. On the other hand, for the period during 

one day to the maturity, asymmetric nonlinear mean reversion in implied volatility with delta 
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moneyness measure is more significant than traditional moneyness measure. 
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