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Abstract

We consider the identification of semiparametric models in nonclassical errors-in-variables

models with an unobserved regressor. The identification strategy does not require addi-

tional data information, such as instruments, double measurements, or validation data are

available. Our main identifying assumptions only include the completeness of several fam-

ilies of observable conditional distributional functions or injectivity of integral operators

constructed by observable density functions. The detailed discussions of the identifica-

tion in continuous and discrete cases are provided. While estimators in discrete cases are

directly by the identification steps, estimators in continuous cases are constructed using

a sieve maximum likelihood estimator (MLE). The finite-sample properties of these es-

timators are investigated through Monte Carlo simulations. An empirical application of

measurement errors in consumption is demonstrated.
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1. Introduction

In many econometric models, the parameter of interest θ is usually defined through a family

of conditional densities of y given x∗,

fY |X∗(y|x∗; θ),(1)

where y is the endogenous variables, x∗ is the unobserved explanatory, and θ ∈ Θ is a param-

eter which specify the exact structure of the model. That is: there exists θtrue ∈ Θ such that

fY |X∗(y|x∗; θtrue) = fY |X∗(y|x∗). When x∗ is observed in the sample, the identifiability of the

parametric system can be approached via the nonsingularity of Fisher’s information matrix

evaluated at the true value of the parameter, θtrue. However, if x∗ is not observed, only

its error-contaminated counterpart, x, is observed, complications arise due to the presence

of measurement error. In this paper, we consider parametric econometric models (1) with

nonclassical measurement error when no additional data, such as validation data or double

measurements, are available. The measurement error of the nonclassical type creates an iden-

tification problem that complicates consistent estimation of the parameter θtrue. To solve the

identification problem, we impose several assumptions related to the completeness of fami-

lies of conditional distributional functions. The intuition of these identification assumptions

is to allows us to obtain a family of conditional distribution in which the standard condi-

tional maximum likelihood estimate (CMLE) can be applied to. Under these assumptions,

the parametric family fY |X∗(y|x∗; θ) can be transformed into the family of probability density

functions, f(x; θ) without losing variation of the parameter θ. This family is then used by

CMLE with the observed data to estimate the parameters of interest.

Our approach relies on completeness of families of distributions. This type of assump-

tions are quite weak and are commonly used in the literature on nonparametric instrumental

variable models. Completeness assumptions are often phrased in terms of injectivity assump-

tions of an integral operator whose kernel function are the corresponding density functions.

Completeness has been considered by several studies e.g. Newey and Powell (2003), Blun-

dell, Chen, and Kristensen (2007), Hu and Shum (2008), Shiu and Hu (2010), and Carrasco,

Florens, and Renault (2007), etc. The detailed discussions of the property can be found in

D’Haultfoeuille (2011), Andrews (2011), and Hu and Shiu (2011).
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The validity of the classical measurement error assumption has raised great concern in

a number of practical applications.1 Measurement error in a discrete variable, such as edu-

cation, gender, or union status, is considered to be discrete, while the error in a continuous

variable, such as wage or income, is believed to be continuous.2 In the case of discretely

distributed regressors, estimators using instrumental variables in nonclassical measurement

error models have been developed. Mahajan (2006) studies a nonparametric regression model

where one of the true regressors is a binary variable and shows that the regression function

is nonparametrically identified in the presence of an instrumental variable that is correlated

with the unobserved true underlying variable but unrelated to the measurement error. Hu

(2008) provides a solution to nonlinear models with multi-value misclassification error using

instrumental variables. The misclassification error is also allowed to be correlated with all

the explanatory variables in the model. Lewbel (2007) considers a nonparametric or semi-

parametric regression model with mismeasured binary regressor. The model is similar to a

model of average treatment effect where treatment may be misclassified. On the other hand,

Chen, Hu, and Lewbel (2009) obtain nonparametric identification without additional sample

information, such as instrumental variables or a secondary sample.

As for nonclassical nonlinear errors-in-variables models with continuously distributed vari-

ables (in both linear or nonlinear models), Chen, Hong, and Tamer (2005) and Chen, Hong,

and Tarozzi (2008) make use of an auxiliary data set containing correctly measured observa-

tions to obtain consistent estimates of parameters in moment conditions. Hu and Schennach

(2008) propose a approach in which the main identifying assumption is that some measures

of location of the distribution of the measurement error (e.g. its mean, mode or median)

equals zero. They show that the joint densities of observable variables are related to the

joint densities of unobservable variables by an integral equation and the equation is shown

to define the operator equivalent relationship. The identification of the model relies on the

unique eigenvalue-eigenfunction decomposition of the integral operator, and the estimation is

through sieve maximum likelihood estimation.

The rest of the paper is organized as follows. Section 2 introduces the completeness

assumptions and provide the derivation of identification. Section 3 gives detailed discussion

1Studies in Bollinger (1998), Bound, Brown, Duncan, and Rodgers (1994), and Bound, Brown, and Math-
iowetz (2001) provide provide evidences of nonclassical measurement errors in economics data sets.

2Discrete measurement error is also called misclassification error.
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of the identification in continuous and discrete cases. Section 4 provides concluding remarks.

2. Identification

2.1. Assumptions and Results

Set the domains of the parametric density function fY |X∗(y|x∗; θ) and the true density function

of interest fY |X∗(y|x∗) be Yθ and Y respectively. Let L2(X, ω) = {h(·) :
∫
X |h(x)|2ω(x)dx <

∞, } be a weighted L2 space such that
∫
X ω(x)dx = 1. For a given parameter θ, define an

operator as follows:

LfY |X∗;θ : L2(X ∗, ω)→ L2(Yθ) with(2)

(LfY |X∗;θh)(y) =

∫
fY |X∗(y|x∗; θ)h(x∗)ω(x∗)dx∗, ∀y ∈ Yθ.(3)

The following definition is introduced to define a generalization of the completeness.

Definition 2.1. A family of functions {f(x, z) : x ∈ X} satisfies a completeness condition if

for h(z) ∈ L2(Z) such that

∫
f(x, z)h(z)dz = 0 for all x.(4)

then h(z) = 0. That is: there does not exist a nonzero function in L2(Z) orthogonal to the

family of the functions {f(x, z) : x ∈ X}.

Given a conditional density function f(x|z), we can define two families of functions,

{f(x|z) : x ∈ X} and {f(x|z) : z ∈ Z}. The completeness of the second family {f(x|z) :

z ∈ Z} is the same as the conditional expectation version of completeness in Andrews (2011),

Newey and Powell (2003), and Hu and Shiu (2011), i.e., for h(x) ∈ L2(X ) if E[h|z] = 0 for all

z then h = 0.

Assumption 2.1. (Dependence between Y and X∗) Assume that for each θ ∈ Θ, the family

of the latent density functions {fY |X∗(y|x∗; θ) : y ∈ Yθ} is complete over L2(X ∗, ω).

This assumption guarantees that the operators LfY |X∗;θ are invertible for all θ and also

secures dependence between y and x∗. If y and x∗ are independent then it violates complete-

ness of {fY |X∗(y|x∗; θtrue) : y ∈ Y}. Since the operator LfY |X∗;θ is invertible for each θ, define
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f(x∗, x; θ) ≡ ω(x∗) · L−1
fY |X∗;θ

(fY,X(y, x)). Although completeness of the family of functions,

{fY |X∗(y|x∗; θ) : y ∈ Yθ} makes f(x∗, x; θ) exist, we might lose variation of the parameter θ.

That is: f(x∗, x; θ) is independent of the parameter θ or f(x∗, x; θ1) = f(x∗, x; θ2) for θ1 and

θ2 in Θ. Define

L fX∗,X;θ
ω(x∗)

: L2(X ∗, ω)→ L2(X ) with (L fX∗,X;θ
ω(x∗)

h)(x) =

∫
f(x∗, x; θ)

ω(x∗)
h(x∗)ω(x∗)dx∗.

The next assumption prevents this loss.

Assumption 2.2. (Dependence between X and X∗) Assume the following conditions:

(i) the family of the joint density functions {fY,X(y, x) : x ∈ X} is complete over L2(Y);

(ii) the family of the parametric density functions {fY |X∗(y|x∗; θtrue) : x∗ ∈ X ∗} is com-

plete over L2(Y), i.e.,
∫
Y fY |X∗(y|x

∗; θtrue)h(y)dy = 0 for any x∗ implies h = 0.

The second part of the assumption is different from Assumption 2.1.3 Consider some

equivalent condition for Assumption 2.2. Define operators

LfY,X : L2(Yθ ∩ Y)→ L2(X ) with (LfY,Xh)(x) =

∫
Yθ∩Y

fY,X(y, x)h(y)dy,

L̃fY |X∗;θ : L2(Yθ ∩ Y)→ L2(X ∗, ω) with (L̃fY |X∗;θh)(x∗) =

∫
fY |X∗(y|x∗; θ)h(y)dy.

For arbitrary h ∈ L2(Yθ ∩ Y),

(LfY,Xh)(x)(5)

=

∫
fY,X(y, x)h(y)dy(6)

=

∫ (∫
X ∗
fY |X∗(y|x∗; θ)f(x∗, x; θ)dx∗

)
h(y)dy(7)

=

∫
X ∗

(∫
fY |X∗(y|x∗; θ)h(y)dy

)
f(x∗, x; θ)dx∗(8)

=

∫
X ∗

f(x∗, x; θ)

ω(x∗)

(
L̃fY |X∗;θh)(x∗)

)
ω(x∗)dx∗(9)

= (L fX∗,X;θ
ω(x∗)

L̃fY |X∗;θh)(x).(10)

3Consider y = bx∗ + η with X ∗ = {0, 1} and η is from standard normal distribution truncated by [− 1
2
, 1
2
].

The family {fY |X∗(y|x∗; θ) : x∗ ∈ X ∗} is not complete in L2(Yθ) but the family {fY |X∗(y|x∗; θ) : y ∈ Yθ} is
complete in L2(X ∗) by the results in Newey and Powell (2003) which are introduced as Theorem 2.2 & 2.2 in
subsection 2.2.
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It follows that LfY,X = L fX∗,X;θ
ω(x∗)

L̃fY |X∗;θ . The equation suggests that the invertibility of the

operators LfY,X and L̃fY |X∗;θtrue make the operator L fX∗,X
ω(x∗)

invertible. Since the completeness

of the families {fY,X(y, x) : x ∈ X} and {fY |X∗(y|x∗; θtrue) : x∗ ∈ X ∗} in Assumption 2.2 en-

sures the invertibility of the operators LfY,X and L̃fY |X∗;θtrue , the operator L fX∗,X
ω(x∗)

is invertible

under Assumption 2.2. This invertibility leads to the completeness of {fX∗,X(x∗,x)

ω(x∗) : x ∈ X}

over L2(X ∗, ω). Since ω(x∗) is positive and bounded above, the family {fX∗,X(x∗, x) : x ∈ X}

is also complete over L2(X ∗, ω). Notice that (1) Assumption 2.2(i) imposes restrictions on

the observables joint density functions fY,X(y, x) so that it is testable; (2) the independence

between X∗ and X fails Assumption 2.2. By the definition, f(x∗, x; θtrue) = f(x∗, x). If

θ 6= θtrue then fY |X∗(y|x∗; θ) 6= fY |X∗(y|x∗; θtrue). Follow the definition of f(x∗, x; θ),

fY,X(y, x) =

∫
fY |X∗(y|x∗; θ)f(x∗, x; θ)dx∗, ∀y ∈ Yθ ∩ Y(11)

fY,X(y, x) =

∫
fY |X∗(y|x∗; θtrue)f(x∗, x; θtrue)dx

∗ ∀y ∈ Y.(12)

Then,

0 =

∫
fY |X∗(y|x∗; θ)f(x∗, x; θ)− fY |X∗(y|x∗; θtrue)f(x∗, x; θtrue)dx

∗,(13)

=

∫
(fY |X∗(y|x∗; θ)f(x∗, x; θ)− fY |X∗(y|x∗; θ)f(x∗, x; θtrue)dx

∗(14)

+

∫
fY |X∗(y|x∗; θ)f(x∗, x; θtrue)− fY |X∗(y|x∗; θtrue)f(x∗, x; θtrue)dx

∗,

=

∫
fY |X∗(y|x∗; θ) (f(x∗, x; θ)− f(x∗, x; θtrue)) dx

∗(15)

+

∫ (
fY |X∗(y|x∗; θ)− fY |X∗(y|x∗; θtrue)

)
f(x∗, x; θtrue)dx

∗.

Suppose that f(x∗, x; θ) = f(x∗, x; θtrue) for θ 6= θtrue. Plugging the equation into Eq. (14)

implies that for all (y, x) ∈ (Yθ ∩ Y)×X ,

0 =

∫ (
fY |X∗(y|x∗; θ)− fY |X∗(y|x∗; θtrue)

) f(x∗, x; θtrue)

ω(x∗)
ω(x∗)dx∗.

The completeness of the family {fX∗,X(x∗,x)

ω(x∗) : x ∈ X} over L2(X ∗, ω) under Assumption 2.2

results in fY |X∗(y|x∗; θ) = fY |X∗(y|x∗; θtrue) for θ 6= θtrue, a contradiction. Hence, f(x∗, x; θ)

is well defined and f(x∗, x; θ) is still a function of θ, i.e., f(x∗, x; θ) 6= f(x∗, x; θtrue) if θ 6= θtrue.
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To identify θ from observable distribution, it is necessary to integrate out the unobserv-

able true covariate x∗. Denote f̄(x; θ) ≡
∫
f(x∗, x; θ)dx∗. However, the parameter θ might

disappear or lose variation after integrating out x∗ in f(x∗, x; θ). The following assumption

related to the structure of the parameter θ is needed to make the parameter survive after the

integration.

Assumption 2.3. (Variation in Parameter) The family of derivatives of the parametric den-

sity functions over θ, { 1
ω(x∗)

∂
∂θfY |X∗(y|x

∗; θtrue) : x∗ ∈ X ∗}, is complete over L2(Y).

This assumption of derivation has an intuitive sense since it implies that completeness is

well preserved when the family {fY |X∗(y|x∗; θtrue) : x∗ ∈ X ∗} varies around the true parameter

θtrue. Denote KA;θ(x
∗, x) = f(x∗,x;θ)−f(x∗,x)

ω(x∗) and KB;θ(y, x
∗) =

fY |X∗ (y|x∗;θ)−fY |X∗ (y|x∗)
ω(x∗) for

θ 6= θtrue. Define operators

LKA;θ
: L2(X ∗, ω)→ L2(X ) with (LKA;θ

h)(x) =

∫
KA;θ(x

∗, x)h(x∗)ω(x∗)dx∗,(16)

LKB;θ
: L2(Yθ ∩ Y)→ L2(X ∗, ω) with (LKB;θ

h)(x∗) =

∫
KB;θ(y, x

∗)h(y)dy,(17)

LfX∗,X;θ
: L2(X ∗, ω)→ L2(X ) with (LfX∗,X;θ

h)(x) =

∫
f(x∗, x; θ)h(x∗)ω(x∗)dx∗.(18)

From Eq. (13)-(15), for all (y, x) ∈ (Yθ ∩ Y)×X

0 =

∫
fY |X∗(y|x∗; θ)KA;θ(x

∗, x)ω(x∗)dx∗ +

∫
KB;θ(y, x

∗)f(x∗, x)ω(x∗)dx∗.(19)
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For arbitrary h ∈ L2(Yθ ∩ Y),

(LKA;θ
L̃fY |X∗;θh)(x)(20)

=

∫
x∗
KA;θ(x

∗, x)(L̃fY |X∗;θh)(x∗)ω(x∗)dx∗(21)

=

∫
x∗
KA;θ(x

∗, x)

∫
y
fY |X∗(y|x∗; θ)h(y)dyω(x∗)dx∗(22)

=

∫
y

(∫
x∗
fY |X∗(y|x∗; θ)KA;θ(x

∗, x)ω(x∗)dx∗
)
h(y)dy(23)

= −
∫
y

(∫
x∗
KB;θ(y, x

∗)f(x∗, x)ω(x∗)dx∗
)
h(y)dy(24)

= −
∫
x∗
f(x∗, x)

(∫
y
KB;θ(y, x

∗)h(y)dy

)
ω(x∗)dx∗(25)

= −
∫
x∗
f(x∗, x)(LKB;θ

h)(x∗)ω(x∗)dx∗(26)

= −(LfX∗,XLKB;θ
h)(x),(27)

where we have used (i) Eq. (19), (ii) an interchange of the order of integration (justified

by Fubini’s theorem), and (iii) the definitions of LKA;θ
, L̃fY |X∗;θ , LfX∗,X , and and LKB;θ

. It

follows that

0 = LKA;θ
L̃fY |X∗;θ + LfX∗,XLKB;θ

.(28)

Consider a parameter θ = θtrue + h for some small h 6= 0. Plug this equation into Eq. (28)

and divide the equation by h,

0 =

(
1

h
LKA;θtrue+h

)
L̃fY |X∗;θtrue+h + LfX∗,X

(
1

h
LKB;θtrue+h

)
.(29)

Define

LdKA;θ
: L2(X ∗, ω)→ L2(X ) with(30)

(LdKA;θ
h)(x) =

∫ (
1

ω(x∗)

∂

∂θ
f(x∗, x; θ)

)
h(x∗)ω(x∗)dx∗,(31)

LdKB;θ
: L2(Y)→ L2(X ∗, ω) with(32)

(LdKB;θ
h)(x∗) =

∫ (
1

ω(x∗)

∂

∂θ
fY |X∗(y|x∗; θ)

)
h(y)dy.(33)
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Let h 7→ 0, Eq. (29) becomes

0 = LdKA;θtrue
L̃fY |X∗;θtrue + LfX∗,XLdKB;θtrue

.(34)

Assumption 2.2(ii) and 2.3 guarantee the operators L̃fY |X∗;θtrue , and LdKB;θtrue
are invertible

respectively. Applying these results to Eq. (34) with the invertibility of LfX∗,X from Assump-

tion 2.2 leads to the invertibility of the operator LdKA;θtrue
. This implies that the family of

the derivatives over θ, { 1
ω(x∗)

∂
∂θf(x∗, x; θtrue) : x ∈ X}, is complete over L2(X ∗, ω).

Suppose f̄(x; θ) = f̄(x; θtrue) for θ 6= θtrue. This is
∫
f(x∗, x; θ)dx∗ =

∫
f(x∗, x)dx∗. It

follows that

∫ (
1

ω(x∗)

∂

∂θ
f(x∗, x; θtrue)

)
ω(x∗)dx∗ = 0 for all x.(35)

Hence, a constant function is orthogonal to the family { 1
ω(x∗)

∂
∂θf(x∗, x; θtrue) : x ∈ X}. Since

the constant function is in L2(X ∗, ω), Eq. (35) contravenes completeness of { 1
ω(x∗)

∂
∂θf(x∗, x; θtrue) :

x ∈ X}. Therefore, under Assumptions 2.1-2.3, f̄(x; θ) is well defined and f̄(x; θ) 6= f̄(x; θtrue)

if θ 6= θtrue.

Remark: one of necessary conditions from Assumptions 2.1-2.3 is that Yθ = Y for all θ is

ruled out. Suppose that Yθ = Y. Integrating out y over the domain Y in Eq. (11) and (12)

and interchanging integrations, we obtain

fX(x) =

∫
x∗

(∫
y
fY |X∗(y|x∗; θ)dy

)
f(x∗, x; θ)dx∗ =

∫
x∗
f(x∗, x; θ)dx∗ for all θ ∈ Θ.(36)

There is no variation of the parameter θ after the integration. This observation shows that

Assumptions 2.1-2.3 restricts the domains, Yθ and Y.

Since the functions f̄(x; θ) have a valid parametric form, the parametric family {f̄(x; θ) :

θ ∈ Θ} might provide a parameterized family of probability density functions (pdf) for f(x).

There are two requirements for being a parametric pdf, (1) it is nonnegative everywhere, and

(2) its integral over the entire space is equal to one. In order to satisfy these conditions,

consider the normalized function f(x; θ) ≡ |f̄(x;θ)|∫
X |f̄(x;θ)|dx which is positive and its integral over

the entire space is equal to one. Similar to the previous consideration, this normalization

might not carry the variation of θ. The next assumption makes the values of f̄(x; θ) positive
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for any parameter in Θ and then f(x; θ) = f̄(x;θ)∫
X f̄(x;θ)dx

under the assumption.

Assumption 2.4. (Positivity around θtrue) Assume Θ is an open neighbor of θtrue such that

(i) the operator LfY |X∗;θ is bounded below for θ ∈ Θ, i.e.,

c1 ≤ sup
f∈L2(X ∗,ω)

∥∥∥LfY |X∗;θ(f)
∥∥∥

‖f‖
≡
∥∥∥LfY |X∗;θ∥∥∥ ∀θ ∈ Θ;

(ii)
∫
y

∫
x∗

(
fY |X∗(y|x∗; θ)− fY |X∗(y|x∗; θtrue)

)2
ω(x∗)dx∗dy ≤ c2|θ − θtrue| ∀θ ∈ Θ;

(iii) ‖fY,X(·, x)‖2 =
∫
Y fY,X(y, x)2dy ≤M for all x ∈ X ;

(iv) the density function f(x) is bounded below, i.e., f(x) > c3 > 0.

Lemma 2.1. Suppose that Assumptions 2.1 and 2.4 hold. Then f̄(x; θ) > 0 for all x and

θ ∈ Θ.

Proof Given h1 ∈ L2(Yθ ∩ Y),

h1 = LfY |X∗;θL
−1
fY |X∗;θ

h1(37)

h1 = LfY |X∗;θtrueL
−1
fY |X∗;θtrue

h1.(38)

Subtracting Eq. (38) from Eq. (37),

0 = LfY |X∗;θL
−1
fY |X∗;θ

h1 − LfY |X∗;θL
−1
fY |X∗;θtrue

h1

+ LfY |X∗;θL
−1
fY |X∗;θtrue

h1 − LfY |X∗;θtrueL
−1
fY |X∗;θtrue

h1

= LfY |X∗;θ

(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
h1 +

(
LfY |X∗;θ − LfY |X∗;θtrue

)
L−1
fY |X∗;θtrue

h1.

Applying the definition of the operator norm to the above equation leads to

∥∥∥LfY |X∗;θ (L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)∥∥∥ =
∥∥∥(LfY |X∗;θ − LfY |X∗;θtrue)L−1

fY |X∗;θtrue

∥∥∥ .
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Conditions (i) implies
∥∥∥L−1

fY |X∗;θ

∥∥∥ ≤ 1∥∥∥LfY |X∗;θ∥∥∥ ≤
1
c2

. In addition, for h2 ∈ L2(X ∗, ω),

∥∥∥(LfY |X∗;θ − LfY |X∗;θtrue)h2

∥∥∥2

=

∫
y

(∫
x∗

(
fY |X∗(y|x∗; θ)− fY |X∗(y|x∗; θtrue)

)
h2(x∗)ω(x∗)dx∗

)2

dy

≤
∫
y

(∫
x∗

(
fY |X∗(y|x∗; θ)− fY |X∗(y|x∗; θtrue)

)2
ω(x∗)dx∗

)(∫
x∗
h2(x∗)2ω(x∗)dx∗

)
dy

≡
∥∥fY |X∗;θ − fY |X∗;θtrue∥∥2 ‖h2‖2 .

It follows that
∥∥∥LfY |X∗;θ − LfY |X∗;θtrue∥∥∥ ≤ ∥∥fY |X∗;θ − fY |X∗;θtrue∥∥ . Combining these results

with Condition (ii) , we obtain

c2

∥∥∥L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

∥∥∥ ≤ ∥∥∥LfY |X∗;θ (L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)∥∥∥
=
∥∥∥(LfY |X∗;θ − LfY |X∗;θtrue)L−1

fY |X∗;θtrue

∥∥∥
≤
∥∥∥LfY |X∗;θ − LfY |X∗;θtrue∥∥∥∥∥∥L−1

fY |X∗;θtrue

∥∥∥
≤ 1

c1

∥∥fY |X∗;θ − fY |X∗;θtrue∥∥
≤ c2

c1
|θ − θtrue|.

Using these results to compute the difference between f̄(x; θ) and f(x),

|f̄(x; θ)− f(x)|2

=
∣∣∣ ∫

x∗
f(x∗, x; θ)− f(x∗, x; θtrue)dx

∗
∣∣∣2

=
∣∣∣ ∫

x∗
ω(x∗)

(
L−1
fY |X∗;θ

(fY,X(y, x))− L−1
fY |X∗;θtrue

(fY,X(y, x))
)
dx∗
∣∣∣2

=
∣∣∣ ∫

x∗
ω(x∗)

(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
(fY,X(y, x))dx∗

∣∣∣2
≤
∫
x∗

[(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
(fY,X(y, x))

]2
ω(x∗)dx∗

∫
x∗
ω(x∗)dx∗

≤ c4

∥∥∥L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

∥∥∥2
‖fY,X(·, x)‖2

≤ c2
2c4M

c4
1

|θ − θtrue|2.

This suggests f(x) − f̄(x; θ) ≤ |f̄(x; θ) − f(x)| ≤ c5|θ − θtrue|. Therefore, f̄(x; θ) is bounded
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below by

0 < c3 − c5|θ − θtrue| < f(x)− c5|θ − θtrue| ≤ f̄(x; θ) ∀θ ∈ Θ,

where we have used (i) Θ is an open neighbor of θtrue, (ii) Condition (iv), f(x) > c3 > 0.

Q.E.D.

Assumption 2.5. (Normalization) Suppose that the family of the functions { ∂∂xfY,X(y, x)−

f ′(x)fY |X(y|x) : x ∈ X} is complete over L2(Y).

Lemma 2.2. Under Assumption 2.2(ii), Assumption 2.3, and Assumption 2.5, the values of

the function f(x; θ) still has a variation in θ, i.e., there exists θ 6= θtrue such that f(x; θ) 6=

f(x; θtrue).

Proof Set h1(y, x) = ∂
∂xfY,X(y, x)− f ′(x)fY |X(y|x). Use Eq. (12) to rewrite h1(y, x) as,

h1(y, x) =
∂

∂x
fY,X(y, x)− f ′(x)

fY,X(y, x)

f(x)

=

∫
fY |X∗(y|x∗; θtrue)

[
∂

∂x
f(x∗, x; θtrue)− f ′(x)

f(x∗, x; θtrue)

f(x)

]
dx∗.(39)

This implies that

L−1
fY |X∗;θtrue

h1(y, x) =
∂

∂x
f(x∗, x; θtrue)− f ′(x)

f(x∗, x; θtrue)

f(x)
.

Define operators

Lh1(y,x) : L2(Y)→ L2(X ) with (Lh1(y,x)h)(x) =

∫
Y
h1(y, x)h(y)dy,

LKD1
: L2(X ∗, ω)→ L2(X ) with

(LKD1
h)(x) =

∫ (
L−1
fY |X∗;θtrue

h1(y, x)
)
h(x∗)ω(x∗)dx∗.

With these definitions of operators, we can transform Eq. (39) into an operator relationship

Lh1(y,x) = LKD1
L̃fY |X∗;θ . Since L̃fY |X∗;θ is invertible by Assumption 2.2(ii) and the operator

Lh1(y,x) is invertible by the completeness of the family {h1(y, x) : x ∈ X} over L2(Y) , the

operator LKD1
is invertible. This amounts to the family {L−1

fY |X∗;θtrue
h1(y, x) : x ∈ X} is

12



complete over L2(X ∗, ω). This implies that the family {ω(x∗)L−1
fY |X∗;θtrue

h1(y, x) : x ∈ X} is

also complete over L2(X ∗, ω).

On the other hand,

h1(y, x) = LfY |X∗;θL
−1
fY |X∗;θ

h1(y, x)

h1(y, x) = LfY |X∗;θtrueL
−1
fY |X∗;θtrue

h1(y, x).

It follows that

0 = LfY |X∗;θ

(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
h1(y, x) +

(
LfY |X∗;θ − LfY |X∗;θtrue

)
L−1
fY |X∗;θtrue

h1(y, x),

=

∫
x∗
fY |X∗(y|x∗; θ)

[(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
h1(y, x)

]
ω(x∗)dx∗

+

∫
x∗

(
fY |X∗;θ − fY |X∗;θtrue

) [
L−1
fY |X∗;θtrue

h1(y, x)
]
ω(x∗)dx∗

SetKC;θ(x
∗, x) =

(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
h1(y, x) andKD2(x∗, x) = ω(x∗)L−1

fY |X∗;θtrue
h1(y, x).

Then, the above equation becomes

0 =

∫
x∗
fY |X∗(y|x∗; θ)KC;θ(x

∗, x)ω(x∗)dx∗ +

∫
x∗
KB;θ(y, x

∗)KD2(x∗, x)ω(x∗)dx∗.(40)

Define

LKC;θ
: L2(X ∗, ω)→ L2(X ) with

(LKC;θ
h)(x) =

∫ ([(
L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

)
h1(y, x)

])
h(x∗)ω(x∗)dx∗,

LdKC;θtrue
: L2(X ∗, ω)→ L2(X ) with

(LdKC;θtrue
h)(x) =

∫ [(
lim

θ→θtrue

L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

θ − θtrue

)
h1(y, x)

]
h(x∗)ω(x∗)dx∗,

LKD2
: L2(X ∗, ω)→ L2(X ) with

(LKD2
h)(x) =

∫ (
ω(x∗)

[
L−1
fY |X∗;θtrue

h1(y, x)
])
h(x∗)ω(x∗)dx∗.

13



With these notations, similar to the derivation in Eq. (28), given h ∈ L2(Y),

(LKC;θ
L̃fY |X∗;θh)(x)

=

∫
x∗
KC;θ(x

∗, x)(L̃fY |X∗;θh)(x∗)ω(x∗)dx∗

=

∫
x∗
KC;θ(x

∗, x)

∫
y
fY |X∗(y|x∗; θ)h(y)dyω(x∗)dx∗

=

∫
y

(∫
x∗
fY |X∗(y|x∗; θ)KC;θ(x

∗, x)ω(x∗)dx∗
)
h(y)dy

= −
∫
y

(∫
x∗
KB;θ(y, x

∗)KD2(x∗, x)ω(x∗)dx∗
)
h(y)dy

= −
∫
x∗
KD2(x∗, x)

(∫
y
KB;θ(y, x

∗)h(y)dy

)
ω(x∗)dx∗

= −(LKD2
LKB;θ

h)(x),

where we have used Eq. (40). Therefore, LKC;θ
L̃fY |X∗;θ +LKD2

LKB;θ
= 0. Divide the operator

relationship by θ − θtrue and let θ → θtrue,

LdKC;θtrue
L̃fY |X∗;θtrue + LKD2

LdKB;θtrue
= 0,(41)

which is analogous to Eq. (34). Applying the invertibility of the operators LKD2
to Eq. (41)

along with invertibility of the operators L̃fY |X∗;θtrue and LdKB;θtrue
from Assumption 2.2(ii)

and Assumption 2.3 respectively, the operator LdKC;θtrue
is also invertible. This invertibility

implies that the family {

(
lim

θ→θtrue

L−1
fY |X∗;θ

−L−1
fY |X∗;θtrue

θ−θtrue

)
h1(y, x) : x ∈ X} is complete over

L2(X ∗, ω).

Suppose that f(x; θ) = f(x; θtrue) for all θ ∈ θtrue. Write this out
∫
f(x∗, x; θ)dx∗ =

f(x)
∫
X f̄(x; θ)dx. This suggests that for all x

∫
f(x∗, x; θ)

f(x)
dx∗ =

∫
X
f̄(x; θ)dx.(42)

The right-hand-side of the above equation is independent of x. Thus, given x1 and x2,

∫
f(x∗, x1; θ)

f(x1)
dx∗ =

∫
f(x∗, x2; θ)

f(x2)
dx∗.(43)
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It follows that

0 =

∫ (
f(x∗, x1; θ)

f(x1)
− f(x∗, x2; θ)

f(x2)

)
dx∗,

=

∫
ω(x∗)

(
L−1
fY |X∗;θ

(
fY,X(y, x1)

f(x1)

)
− L−1

fY |X∗;θ

(
fY,X(y, x2)

f(x2)

))
dx∗,

=

∫
ω(x∗)L−1

fY |X∗;θ

(
fY,X(y, x1)

f(x1)
−
fY,X(y, x2)

f(x2)

)
dx∗,

=
1

f(x1)

∫
ω(x∗)L−1

fY |X∗;θ

(
[fY,X(y, x1)− fY,X(y, x2)]− f(x1)− f(x2)

f(x2)
fY,X(y, x2)

)
dx∗.

Set x1 = x+ h and x2 = x in the above equation and divide it by h.

0 =

∫
ω(x∗)L−1

fY |X∗;θ

(
fY,X(y, x+ h)− fY,X(y, x)

h
− f(x+ h)− f(x)

h

fY,X(y, x)

f(x)

)
dx∗.

Let h→ 0,

0 =

∫
ω(x∗)L−1

fY |X∗;θ

(
∂

∂x
fY,X(y, x)− f ′(x)

fY,X(y, x)

f(x)

)
dx∗

=

∫
ω(x∗)L−1

fY |X∗;θ
(h1(y, x)) dx∗ for all θ.

Subtracting the above equation with parameters θ 6= θtrue from the one with θtrue and then

dividing it by θ − θtrue, we have

0 =

∫ [(L−1
fY |X∗;θ

− L−1
fY |X∗;θtrue

θ − θtrue

)
h1(y, x)

]
ω(x∗)dx∗,

which is contradict to the completeness of {

(
lim

θ→θtrue

L−1
fY |X∗;θ

−L−1
fY |X∗;θtrue

θ−θtrue

)
h1(y, x) : x ∈ X}.

Therefore, f(x; θ) has a nontrivial variation in θ. Q.E.D.

To distinguish the true value of the parameter θtrue from a generic element of Θ, the

Kullback information is introduced:

K(θ) = E

[
log

(
f(x; θ)

f(x)

)]
(44)

=

∫ ∞
−∞

log

(
f(x; θ)

f(x)

)
f(x)dx.(45)

Note that since fY |X∗(y|x∗; θ) is correctly specified at θtrue, f(x; θ) is also correctly specified
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at θtrue and f(x; θtrue) = f(x) if LfY |X∗;θtrue is invertible.

Theorem 2.1. Under Assumptions 2.1-2.5, given the distribution of the observable variable

(y, x), the equation

K(θ) = 0(46)

has a unique solution at θ = θtrue in Θ and fY |X∗(y|x∗; θ) is identified at θtrue.

Proof Using the strict concavity of log(·) and applying Jensen’s inequality, for f(x; θ) 6= f(x)

K(θ) =

∫ ∞
−∞

log

(
f(x; θ)

f(x)

)
f(x)dx(47)

< log

∫ ∞
−∞

(
f(x; θ)

f(x)

)
f(x)dx(48)

= log 1(49)

= 0.(50)

and K(θtrue) = 0. Since f(x; θ) 6= f(x; θtrue) if θ 6= θtrue, K(θ) < 0 for θ 6= θtrue. K(θ) = 0

has a unique solution at θ = θtrue. This implies that f(x; θ) is identified at θ = θtrue. It shows

that no other θ 6= θtrue generate a distribution indistinguishable from f(x) on the basis of

sample observations. Therefore, fY |X∗(y|x∗; θ) is identified at θtrue. Q.E.D.

Notice that identifiability in Theorem 2.1 is closely connected with the maximum of K(θ).

If this maximum is global and attained only at θ = θtrue, then θtrue is globally identified.

Thus, a sufficient condition for θtrue to be globally identified would be that K ′(θtrue) = 0

and K ′′(θtrue) < 0 if K is differentiable. First, we investigate the form of these derivatives

for a scalar θ. Since
∫∞
−∞ f(x; θ)dx = 1 for any θ, it follows that

∫∞
−∞

∂
∂θf(x; θ)dx = 0 and∫∞

−∞
∂2

∂θ2
f(x; θ)dx = 0. Differentiating (45), we obtain

K ′(θ) =

∫ ∞
−∞

∂
∂θf(x; θ)

f(x; θ)
f(x)dx,
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and

K ′′(θ) =

∫ ∞
−∞

 ∂2

∂θ2
f(x; θ)

f(x; θ)
−

(
∂
∂θf(x; θ)

f(x; θ)

)2
 f(x)dx

= −
∫ ∞
−∞

(
∂
∂θf(x; θ)

f(x; θ)

)2

f(x)dx < 0.

When θ is extended to a vector of parameters, K ′′(θ) becomes the classical information matrix.

IfK ′′(θtrue) is negative definite, standard maximization theory implies thatK ′′(θ) has a unique

maximum at θtrue. That is, if the information matrix at θtrue has full rank, then θtrue is locally

identified

2.2. Examples

The identification of the parametric family relies on completeness of the conditional distri-

bution of y given x∗, fY |X∗(y|x∗; θ). Discussions of the well-known completeness property

of exponential families is introduced in this section. In addition, assumptions are illustrated

using examples. The demonstration will be divided into two cases, a continuous case and

a discrete case. The following results for completeness are adopted from Newey and Powell

(2003).4

Theorem 2.2. Consider f(x|z) = s(x)t(z) exp(µ(z)τ(x)), where s(x) > 0, τ(x) is one-to-

one in x, and support of µ(z) is an open set, then E(h(x)|z) = 0 for any z implies h = 0;

equivalently, the family of conditional density functions {f(x|z) = s(x)t(z) exp(µ(z)τ(x)) :

z ∈ Z} is complete over L2(X ).

The next result involves completeness in the conditional normal case.

Theorem 2.3. Suppose that the distribution of x conditional on z is N(a+ bz, σ2) for σ2 > 0

and the support of z contains an open set, then E(h(x)|z) = 0 for any z implies h = 0;

equivalently, {f(x|z) : z ∈ Z} is complete over L2(X ).

4See Theorem 2.2 and 2.3 in Newey and Powell (2003) for details. There are more discussion of sufficient
conditions for the completeness in Hu and Shiu (2011).
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2.2.1. Continuous Case

Consider parametric models

Y = bX∗ + η(51)

X∗ ⊥ η

We then have the relationship between the Fourier Transform

φY,X(t, x) =

∫
eityfY,X(y, x)dy(52)

φY,X(t, x) = φη(t)φX∗,X(bt, x)(53)

We assume φη is known and the unknowns are b and φX∗,X . We have

φX∗,X(t, x; b) =
φY,X(t/b, x)

φη(t/b)

Then

fX∗,X(x∗, x; b) =
1

2π

∫
e−itx

∗
φX∗,X(t, x)dt

=
1

2π

∫
e−itx

∗ φY,X(t/b, x)

φη(t/b)
dt

Assumption 2.2 is needed to rule out independent case. Suppose that x and x∗ are independent

random variables, i.e., fX∗,X(x∗, x) = fX(x)fX∗(x
∗). Eq. (53) becomes

φY,X(t, x) = φη(t)φX∗(bt)f(x)(54)
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Then

fX∗,X(x∗, x; b) =
1

2π

∫
e−itx

∗ φY,X(t/b, x)

φη(t/b)
dt(55)

=
1

2π

∫
e−itx

∗
φX∗(t)f(x)dt(56)

= fX∗(x
∗)f(x).(57)

We lose the parameter b. It shows that although under Assumptions 2.1, f(x∗, x; b) ≡

L−1
fY |X∗;b

(fY,X(y, x)) exists it is not longer a function of b.

Integrate out x∗ gives

fX(x; b) =

∫
fX∗,X(x∗, x)dx∗

=

∫ [
1

2π

∫
e−itx

∗ φY,X(t/b, x)

φη(t/b)
dt

]
dx∗

Set t/b = s. Then,

fX(x; b) =
b

2π

∫
x∗

[∫
s
e−ibsx

∗ φY,X(s, x)

φη(s)
ds

]
dx∗.(58)

Suppose that the domain of x∗ is X ∗ = (−∞,∞). Eq. (58) becomes

fX(x; b) =
b

2π

∫ ∞
−∞

[∫
s
e−ibsx

∗ φY,X(s, x)

φη(s)
ds

]
dx∗(59)

=
1

2π

∫ ∞
−∞

[∫
s
e−isx̃

φY,X(s, x)

φη(s)
ds

]
dx̃,(60)

where bx∗ = x̃. In this case, fX(x; b) is independent of the parameter b after an integration

over x∗. On the other hand, without loss of generality, assume X ∗ = [0, 1]. In the first case,

Eq. (58) becomes

fX(x; b) =
b

2π

∫ 1

0

[∫
s
e−ibsx

∗ φY,X(s, x)

φη(s)
ds

]
dx∗.(61)

Using bx∗ = x̃ to transform the above equation leads to

fX(x; b) =
1

2π

∫ b

0

[∫
s
e−isx̃

φY,X(s, x)

φη(s)
ds

]
dx̃.(62)
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Denote h(s, x) ≡ φY,X(s,x)
φη(s) . It follows that

fX(x; b) =
1

2π

∫ b

0
φh(x̃, x)dx̃.(63)

Suppose that there exists (b0, x0) such that (1) φh(b0, x0) 6= 0, and (2) φh(x̃, x) is continuous at

(b0, x0). The continuity of φh(x̃, x) at (b0, x0) implies that there is some δ > 0 and φh(x̃, x0) 6=

0 for x̃ ∈ (b0 − δ, b0 + δ). Assume that φh(x̃, x0) > 0 for x̃ ∈ (b0 − δ, b0 + δ). It follows that

fX(x0; b0 +
1

2
δ) =

1

2π

∫ b0+ 1
2
δ

0
φh(x̃, x0)dx̃(64)

=
1

2π

(∫ b0

0
φh(x̃, x0)dx̃+

∫ b0+ 1
2
δ

b0

φh(x̃, x0)dx̃

)
(65)

> fX(x0; b0).(66)

Thus, fX(x; b) depends on the parameter b. This explains the weighted space L2(X ∗, ω) is

essential to the identification.

Assume that the true parameter b0 > 1 and the η has truncated standard normal on

[−lη, lη] with lη > 0 in the model (51). In addition, the domain of the true regressor

X ∗ ≡ [lx∗ , ux∗ ] and lx∗ > lη. Hence, the true density is fY |X∗(y|x∗) = cηφη(y − b0x
∗) =

cη√
2π
e
−(y−b0x

∗)2
2 with Y = (b0x

∗ − lη, b0x
∗ + lη) where cη is used to normalize the density.

The model can be parameterized as fY |X∗(y|x∗; b) = cηφη(y − bx∗) =
cη√
2π
e
−(y−bx∗)2

2 with

Yb = (bx∗ − lη, bx∗ + lη). Appealing to Theorem 2.3 leads to that {fY |X∗(y|x∗; b) : x∗ ∈ X ∗}

is complete in L2(Y) and {fY |X∗(y|x∗; b) : y ∈ Y} is also complete in L2(X ∗) if b 6= 0 and the

support of x∗ is an open set.5 Thus, it’s necessary to assume that X ∗ contains an open set in

this parametric family.

The variation in this parametric family is included in { ∂∂bfY |X∗(y|x
∗; b0) : x∗ ∈ X ∗}. Sup-

pose that
∫

∂
∂bfY |X∗(y|x

∗; b0)h(y)dy = 0 for all x∗ ∈ X ∗. Rewrite it as
∫

∂
∂yfY |X∗(y|x

∗; b0)h(y)dy =

0 ∀x∗ ∈ X ∗. Applying integration by part, 0 =
∫

∂
∂yfY |X∗(y|x

∗; b0)h(y)dy = (fY |X∗(y|x∗; b0)−
cη√
2π
e
−l2η
2 )h(y)

∣∣bx∗+lη
bx∗−lη−

∫
(fY |X∗(y|x∗; b0)− cη√

2π
e
−l2η
2 ) ∂∂yh(y)dy ≡

∫
(fY |X∗(y|x∗; b0)−f(lη))

∂
∂yh(y)dy

5When X ∗ is a finite domain, a choice of the weighted function ω can be a constant ratio, ω = 1∫
X∗ 1dx∗ . It is

easy to extend a function in L2(X ∗) to a function in L2(R). Theorem 2.3 proves that {fY |X∗(y|x∗; θ) : y ∈ Y}
is complete in L2(R) and it also implies that the family is complete in L2(X ∗). Similarly, the argument works
for the family {fY |X∗(y|x∗; θ) : x∗ ∈ X ∗}.
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∀x∗ ∈ X ∗, where f(lη) =
cη√
2π
e
−l2η
2 . It follows that

∫
fY |X∗(y|x∗; b0)

∂

∂y
h(y)dy =

∫
f(lη)

∂

∂y
h(y)dy ≡ cfη =

∫
cfηfY |X∗(y|x∗; b0)dy.(67)

This implies that
∫
fY |X∗(y|x∗; b0)[ ∂∂yh(y)− cfη ]dy = 0 for all x∗ ∈ X ∗. By the completeness

of {fY |X∗(y|x∗; b) : x∗ ∈ X ∗}, ∂
∂yh(y) = cfη and then h(y) = cfηy+ c. Plugging this form into

the definition of cfη , cfη =
∫
f(lη)

∂
∂yh(y)dy = 2cfηf(lη)lη. If cfη 6= 0 then 2f(lη)lη = 1 which

contravenes 2f(lη)lη < 1. Hence, cfη = 0 and h(y) = c. Since
∫

∂
∂yfY |X∗(y|x

∗; b0)h(y)dy = 0,

h(y) = 0 and this shows the family { ∂∂bfY |X∗(y|x
∗; b0) : x∗ ∈ X ∗} is complete and Assumption

2.1 is fulfilled in this continuous case.

2.2.2. Discrete Case

The discrete case refers to that the variables y and x∗ is discrete:

y ∈ Y ≡ {1, 2, ..., J1} and x∗ ∈ X ∗ ≡ {1, 2, ..., J2}.

The main difference between this discrete case and the previous continuous case is that the

linear integral operators are replaced by matrices, which may be more straightforward. There

are two missions for this subsection, the identification technique in Section 1 to a discrete

case and more discussions of completeness in a discrete case.

First, we show how the identification works. For simplicity, assume J1 = J2 = J . The

matrix expression of fY,X(y, x) =
∫
fY |X∗(y|x∗; θ)f(x∗, x; θ)dx∗ is

LfY,X(y,x) = [fY,X(y, x)]l∈Y,m∈X(68)

=


fY |X∗(1|1; θ) . . . fY |X∗(1|J ; θ)

... . . .
...

fY |X∗(J |1; θ) . . . fY |X∗(J |J ; θ)



f(1, 1; θ) . . . f(1, J ; θ)

... . . .
...

f(J, 1; θ) . . . f(J, J ; θ)

(69)

≡ LfY |X∗ (y|x∗;θ)Lf(x∗,x;θ).(70)
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Assumption 2.1 ensures the invertibility of the square matrix LfY |X∗ (y|x∗;θ). Hence

L−1
fY |X∗ (y|x∗;θ)LfY,X(y,x) = Lf(x∗,x;θ),(71)

and since LHS is observable, Lf(x∗,x;θ) is well defined and also observable.6 Consider

LfY,X(y,x) = LfY |X∗ (y|x∗;θ1)Lf(x∗,x;θ1),

LfY,X(y,x) = LfY |X∗ (y|x∗;θtrue)Lf(x∗,x;θtrue).

It follows that

0 = LfY |X∗ (y|x∗;θ1)

(
Lf(x∗,x;θ1) − Lf(x∗,x;θtrue)

)
+
(
LfY |X∗ (y|x∗;θ1) − LfY |X∗ (y|x∗;θtrue)

)
Lf(x∗,x;θtrue).

If f(x∗, x; θ) lost θ, then 0 =
(
LfY |X∗ (y|x∗;θ1) − LfY |X∗ (y|x∗;θtrue)

)
Lf(x∗,x;θtrue). Assumption 2.2

implies that LfY |X∗ (y|x∗;θ1) = LfY |X∗ (y|x∗;θtrue), a contradiction. Thus, Assumption 2.2 makes

sure that Lf(x∗,x;θ) still depends on the parameter θ. Let I = (1, ..., 1)′ be J × 1 vector.

Integrating out x∗ on f(x∗, x; θ) is equal to summing over x∗ on RHS. Then,

I ′L−1
fY |X∗ (y|x∗;θ)LfY,X(y,x) = I ′Lf(x∗,x;θ) = (f̄(1; θ), ..., f̄(J ; θ)).(72)

If f̄(x; θ) does not depend on θ, then I ′
(
Lf(x∗,x;θ) − Lf(x∗,x;θtrue)

)
= 0. This amounts to for

θ 6= θtrue, I
′
(
Lf(x∗,x;θ)−Lf(x∗,x;θtrue)

θ−θtrue

)
= 0. Using the relationship

0 = LfY |X∗ (y|x∗;θ1)︸ ︷︷ ︸
Assumption 2.1

Lf(x∗,x;θ1) − Lf(x∗,x;θtrue)

θ − θtrue
+
LfY |X∗ (y|x∗;θ1) − LfY |X∗ (y|x∗;θtrue)

θ − θtrue
Lf(x∗,x;θtrue)︸ ︷︷ ︸
Assumption 2.2

,

the invertibility of the matrix
Lf(x∗,x;θ1)−Lf(x∗,x;θtrue)

θ−θtrue is equivalent to the invertibility of the

matrix
LfY |X∗ (y|x

∗;θ1)−LfY |X∗ (y|x∗;θtrue)
θ−θtrue under Assumption 2.1 & 2.2. Assumption 2.3 guarantees

the invertibility of
LfY |X∗ (y|x

∗;θ1)−LfY |X∗ (y|x∗;θtrue)
θ−θtrue and rules out I ′

(
Lf(x∗,x;θ)−Lf(x∗,x;θtrue)

θ−θtrue

)
= 0.

The function {f̄(l; θ) : l ∈ X} still has a variation in θ. Finally, we normalize f̄(l; θ) by

6As for the case, J1 6= J2, the completeness of the family {fY |X∗(y|x∗; θ) : y ∈ Yθ} is full rank condition of
the matrix LfY |X∗ (y|x∗;θ) and the generalized inverse (LTfY |X∗ (y|x∗;θ)LfY |X∗ (y|x∗;θ))

−1LTfY |X∗ (y|x∗;θ) is used to

recovery Lf(x∗,x;θ).
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f(l; θ) ≡ f̄(l;θ)
J∑
l=1

f̄(l;θ)

and Assumption 2.4-2.5 guarantees that the family {f(l; θ) : l ∈ X} is a

legit parametric family of p.d.f’s for f(x). Therefore, we can apply standard MLE method to

the parametric family {f(l; θ) : l ∈ X} to search for the true value θtrue.

As for completeness, we conduct the discussion by two different categories. One is that

the parametric family and the original family share the same domain, i.e., Yθ = Y and the

other one is Yθ 6= Y.

Category 1: Yθ = Y

Given y, and x∗, define J1-by-J2 matrices

LfY |X∗ (y|x∗;θ)(73)

=
[
fY |X∗(l|m; θ)

]
1≤l≤J1,1≤m≤J2

(74)

=



fY |X∗(1|1; θ) . . . fY |X∗(1|J2; θ)

fY |X∗(2|1; θ) . . . fY |X∗(2|J2; θ)
... . . .

...

1−
J1−1∑
1=1

fY |X∗(l|1; θ) . . . 1−
J1−1∑
1=1

fY |X∗(l|J2; θ)


J1×J2

.(75)

In the case, J1 = J2, the completeness of the family {fY |X∗(y|x∗; θ) : x∗ ∈ X ∗} is the

invertibility of the square matrix LfY |X∗ (y|x∗;θ). The derivative of the above matrix with

respect to θ is

L ∂
∂θ
fY |X∗ (y|x∗;θ)(76)

=

[
∂

∂θ
fY |X∗(l|m; θ)

]
1≤l≤J1,1≤m≤J2

(77)

=



∂
∂θfY |X∗(1|1; θ) . . . ∂

∂θfY |X∗(1|J2; θ)

∂
∂θfY |X∗(2|1; θ) . . . ∂

∂θfY |X∗(2|J2; θ)
... . . .

...

−
J1−1∑
1=1

∂
∂θfY |X∗(l|1; θ) . . . −

J1−1∑
1=1

∂
∂θfY |X∗(l|J2; θ)


J1×J2

,(78)

which is not invertible and fails Assumption 2.3.

Category 2: Yθ 6= Y
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Consider Y ≡ {1, 2}, X ∗ ≡ {1, 2} and Yθ ≡ {1, 2, 3} with

[
fY |X∗(l|m)

]
l∈Y,m∈X ∗ =

 fY |X∗(1|1) fY |X∗(1|2)

fY |X∗(2|1) fY |X∗(2|2)


2×2

,(79)

and

[
fY |X∗(l|m; θ)

]
l∈Yθ,m∈X ∗

=


fY |X∗(1|1) + θ fY |X∗(1|2)

fY |X∗(2|1)− θ fY |X∗(2|2)− θ

0 θ


3×2

.(80)

Suppose that
∫
fY |X∗(y|x∗; θ)h(y)dy = 0 for all x∗ ∈ X ∗. We have

 fY |X∗(1|1) + θ fY |X∗(1|2)

fY |X∗(2|1)− θ fY |X∗(2|2)− θ

′  h(1)

h(2)

 = 0.(81)

A choice of
[
fY |X∗(l|m)

]
=

 0.9 0.1

0.1 0.9

 and Θ = (−δ, δ) with δ < 0.2 leads to h = 0. This

shows that {fY |X∗(y|x∗; θ) : x∗ ∈ X ∗} is complete over L2(Y). A similar argument applies to

the completeness of {fY |X∗(y|x∗; θ) : y ∈ Y}. On the other hand, the derivative

L ∂
∂θ
fY |X∗ (y|x∗;θ) =

 1 0

−1 −1

(82)

satisfies Assumption 2.3.

3. Estimation

This section focuses on the estimation of parametric conditional density fY |X∗(y|x∗; θ). We

start with a discrete case. Given an observed discrete data {(yi, xi) : i = 1, ..., n}, we estimate

fY,X(y, x) by calculating the sample size of {(yi, xi) = (y, x)} relative to the whole sample

size, i.e., f̂Y,X(y, x) ≡

n∑
l=1

1{(yi,xi)=(y,x)}

n where 1(·) is an indicator function. Applying this

estimated density function to the procedure discussed in subsection 2.2.2, a parametric family

of p.d.f’s f̂(x; θ) for f(x) in the discrete case can be easily constructed. A standard MLE
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method to the parametric family is

θ̂n = arg max
θ

1

n

n∑
i=1

ln f̂(xi; θ).(83)

On the other hand, we propose semiparametric sieve maximum likelihood estimator (sieve

MLE) for a continuous case. This method does not require finding a parametric family of

p.d.f’s for f(x) like the discrete case. In Section 2, we have shown the following equation

fY,X(y, x) =

∫
fY |X∗(y|x∗; θ)f(x∗, x; θ)dx∗, ∀y ∈ Yθ ∩ Y

uniquely determines (θtrue, f(x∗, x)). Treating f(x∗|x; θ) ≡ f(x∗,x;θ)
f(x) as a nonparametric nui-

sance functions suggests that

(θ, f(x∗|x))T = arg max
(θ,f1)T∈A

E ln

∫
fY |X∗(y|x∗; θ)f1(x∗|x; θ)dx∗,

where A is a collection of functions containing the corresponding true densities. A corre-

sponding semiparametric sieve MLE using an i.i.d. sample {(yi, xi) : i = 1, ..., n} has the

following form,

(θ̂n, f̂1(x∗|x; θ̂n))T = arg max
(θ,f1)T∈An

1

n

n∑
i=1

ln

∫
fY |X∗(yi|x∗; θ)f1(x∗|xi; θ)dx∗,(84)

where An is a sequence of sieve spaces approximating A.

The asymptotic theory of the proposed sieve MLE and the detailed development of sieve

approximations of the nonparametric components can be found in Shen (1997), Chen and

Shen (1998), and Ai and Chen (2003). The sieve specification of the nuisance parameter

f1(x∗, xi; θ) is provided in Appendix A.

4. Monte Carlo Simulation

We now investigate the finite-sample properties of the proposed estimator via Monte Carlo

simulations. First, consider the estimator developed in the discrete case to a probit model with

a mismeasured 0-1 dichotomous explanatory variable. The data generating process (DGP)
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for this probit case:

Yi = 1 (β0 + β1X
∗
i + β2Wi + εi ≥ 0) ∀i = 1, ..., n,

with p(X∗ = 1) = p1,W ∼ U(0, 1) and a measurement error probability

[
fX|X∗(l|m)

]
l∈X ,m∈X ∗ =

 1− p2 1− p3

p2 p3


2×2

.

We consider two different values of (β0, β1, β2, p1, p2, p3) with the same parameterizations,

DGP I: (β0, β1, β2, p1, p2, p3) = (0.5,−0.7, 0, 0.5, 0.1, 0.9),

DGP II: (β0, β1, β2, p1, p2, p3) = (−0.4, 0.6,−0.2, 0.5, 0.1, 0.9),

with for each w,

[
fY |X∗(l|m,w; θ)

]
l∈Yθ,m∈X ∗

=


1− Φ (β0 + β2w) 1− Φ (β0 + β1 + β2w)− 10(β0 + β1)2 + 0.4

Φ (β0 + β2w)− 0.5(β0 + β1) + 0.1 Φ (β0 + β1 + β2w)

0.5(β0 + β1)− 0.1 10(β0 + β1)2 − 0.4


3×2

.

In DGP I & II, there are 10% of misreport rates conditional on X∗ = 0, 1. In both cases,

the measurement error probabilities are all invertible which satisfies Assumption 2.2 and the

parametric conditional density also satisfies the requirement in Section 2.1.

The data generating process (DGP) for our continuous case is

Yi = β0 + β1X
∗
i + β2Wi + εi ∀i = 1, ..., n,

with X∗,W ∼ U(0, 1) and the distribution ε is N(0, σ2) truncated on (−1, 1).7 In addition,

assume X = X∗+h(X∗)e, where h(x∗) = 0.2 exp(−x∗) and e ∼ N(0, σ2) truncated on (−1, 1).

7The truncation is necessary since it makes the domain of the dependent variable, Yθ, varies with θ.
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Two different values of (β0, β1, β2, σ
2) are considered,

DGP III: (β0, β1, β2, σ
2) = (0, 1,−1, 0.5),

DGP IV: (β0, β1, β2, σ
2) = (0,−1, 1, 0.5).

The parametric family for this DGP is fY |X∗,W (y|x∗, w; θ) = cε√
2π
e
−(y−β0−β1x

∗−β2w)2

2 . Since the

distributions of ε and e are chosen to be a normal, the density functions fY |X∗,W (y|x∗, w; θ)

and fX∗,X,W in this Monte Carlo experiment fulfills the completeness assumptions of Theorem

2.1.

A sample size N = 500 are considered and 200 simulation replications are conducted at

each estimation. Table 1 presents simulation results under the probit model. The simulation

results of DGP I&II show different directions of bias in the model coefficients (β0, β1, β2).

The coefficients exhibit downward bias in DGP I but there does not exists clear trend about

bias in DGP II. In this sample size, the means and medians of the coefficients are not close

in some estimated coefficients, reflecting some skewness in their respective distributions. In

addition, the medians of the coefficients is more precisely estimated than the means in DGP

II. The finite-sample properties of the proposed sieve MLE in the continuous case are reported

in Table 2. The estimation results show the sieve MLE performs well with N = 1000 since

means and medians of estimation values are close to the true values with appropriate standard

errors. The approximation of the nonparametric nuisance function f(x∗|x,w; θ) is constructed

by Fourier series. The numbers of term, in = 4, jn = 2, and kn = 2 are used as the length of

three univariate Fourier series. See Appendix A for details.

5. Empirical Application

In this section, we illustrate the use of the sieve MLE method by estimating an empirical

model of the demand for food. This empirical illustration is adopted from the specifications

estimated in Blundell, Pistaferri, and Preston (2008). The paper examines the link between

income and consumption inequality and find some partial insurance of permanent shocks,

especially for the college educated and those near retirement. In this empirical application,

we only focus on applying the proposed sieve MLE to an imputation procedure based on food

demand estimates from the Consumer Expenditure Survey (CEX) in Blundell, Pistaferri, and
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Preston (2008).8

To relate the level of food consumption to the level of nondurable consumption in the

CEX data from 1980 to 1992, we also use the following demand equation for food:

oi,t = W′
i,tµ+ p′tα+ β(Di,t)c

∗
i,t + εi,t,(85)

where oi,t is the log of real food expenditure, Wi,t and pt contain a set of demographic

variables and relative prices respectively, c∗i,t is the log of the true unobserved nondurable

expenditure, and εi,t represents unobserved disturbance in food expenditure. Equation (85)

is parameterized by assuming εi,t|Wi,t,pt,c∗i,t
∼ N(0, σ2) truncated on (l, u) and the condi-

tional density becomes f(oi,t|Wi,t,pt, c
∗
i,t; θ) = cε√

2π
e

(oi,t−W′i,tµ−p′tα−β(Di,t)c
∗
i,t)

2

2 . The normality

assumption together with the discussion in the end of subsection 2.2.1 ensure that this family

of the conditional density functions {f(oi,t|Wi,t,pt, c
∗
i,t; θ) : c∗i,t ∈ C∗} satisfies the identifica-

tion assumptions in Section 2. Assume that the nondurable expenditure c∗i,t is measured with

additive error such that ci,t = c∗i,t + νi,t and ci,t is the log of nondurable expenditure available

in the CEX. Plugging the measurement error equation into Eq. (85) yields

oi,t = W′
i,tµ+ p′tα+ β(Di,t)ci,t + (εi,t − β(Di,t)νi,t),

≡W′
i,tµ+ p′tα+ β(Di,t)ci,t + ei,t,

which is the demand equation for food used in Blundell, Pistaferri, and Preston (2008).

Note that the model reflects that the elasticity β(Di,t) varies with time and with observable

household characteristics (D).

The proposed sieve MLE method in Section 3 allows us to handle the measurement error

in nondurable expenditure without using any instrument variable.9 Table 3 presents the

estimation results for our specification of Eq. (85). The point estimates of coefficients of

8Although the Panel Study of Income Dynamics (PSID) contains longitudinal income data, it has limited
consumption data (limited to food expenditure and a few more items related to household consumption).
Blundell, Pistaferri, and Preston (2008) use food expenditures to explore consumer behavior by combining
existing PSID data with data from the repeated cross sections of the CEX. A demand function for food is
estimated using CEX data and then the estimated coefficients are applied to the relevant PSID variables to
create a measure of nondurable consumption in the PSID.

9Blundell, Pistaferri, and Preston (2008) tackle the endogeneity with two types of instruments including
the average of the hourly wage of the husband and the average of the hourly wage of the wife both based on
cohort, year, and education.
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variables, ln c and ln pfood, represent the budget elasticity and the price elasticity respectively.

The estimated values of them are 0.868 and -0.966, with standard errors of 0.254 and 0.428

respectively. Thus, there is evidence of the positive relationship between food consumption

and consumption of nondurables. The coefficient on family size is positive, as expected, but

insignificant. The positive coefficient on age and the negative coefficient on age squared are

consistent with age-consumption profile albeit insignificant. The estimate coefficient on race

suggests that white households have significantly higher rates of food consumption. Compared

with the estimates of Blundell, Pistaferri, and Preston (2008), the parameters have changed

little and the standard errors have fallen for most coefficients, reflecting efficiency gain due

to the normality assumption. The estimated coefficients can be used to invert the demand

function and derive a new panel nondurable consumption series in the PSID. We refer to

Blundell, Pistaferri, and Preston (2008) for more complete discussion.

6. Conclusion

The presence of measurement error can bias estimates of parameters of interest and it is

sometimes questionable to assume the classical errors in variables model. We consider the

identification problem of a parametric family in models where the data are measured with

error and there exists arbitrary correlation between the true variable and the measurement

error. The construction of consistent estimators of the parameters is particularly challenging

for nonlinear model under these situations. Under the completeness assumptions of families

of observable density functions, the parameter of the original parametric family can survive in

several operations, applying an inverse operator, integrating out the unobserved true variable,

and normalization. When the mismeasured variable and the parameter both continue to exist

after these operations, the standard MLE argument can apply to the observed parametric

family to reach the identification.

As shown in the literature of measurement error models, without additional information

or functional form restrictions, a general nonlinear errors-in-variables model cannot be iden-

tified. Viewed from this perspective, there may exists some trade-off between functional form

assumptions and additional data information to reach identification. This study assumes no

any additional information of measurement error but requires the parametric conditional den-
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sity is correctly specified. Therefore, one of the main advantages of this approach over other

methods is that it is not restricted to extra data requirement if the parametric assumption

of the distribution is not a major concern. For example, good valid instruments are uncor-

related with the error and strongly correlated with endogenous regressors. Thus, obtaining

instruments can require considerable ingenuity or access to unusually rich data. This study

provide a solution for this case, using a complete family of parametric density functions and

applying our proposed econometric method can produce consistent estimates of the parameter

of interest.

Appendix

A. The Sieve Specification

This appendix describes the sieve MLE method based on the likelihood function in Eq. (84).

There are two parts fY |X∗,W (y|x∗, w; θ) and f1(x∗|x,w; θ). Since fY |X∗,W (y|x∗, w; θ) is already

parameterized, we only need to show show sieve approximation and the constraint of nonpara-

metric component f1(x∗|x,w; θ). Assume fY |X∗,W (y|x∗, w; θ) = cε√
2π
e
−(y−β0−β1x

∗−β2w)2

2 , where

θ = (β0, β1, β2)T .

A sieve specification of f1(x∗|x,w; θ) is given by the following:

f1(x∗|x,w; θ) =

in∑
i=0

jn∑
j=0

kn∑
k=0

âijkqi(β1x
∗ − β1x)qj(β1x− β0 − β2w)qk(β1x)(86)

Our choice of q′is and q′js are the Fourier series:

qj0(β1x− β0 − β2w) = 1, qj(β1x− β0 − β2w) = cos(
jπ

l2
(β1x− β0 − β2w)),

qk0(β1x) = 1 and qk(β1x) = cos(
kπ

l3
β1x)

qi0(β1x
∗ − β1x) = 1 and qi(β1x

∗ − β1x) = sin(
iπ

l1
(β1x

∗ − β1x)) or

qi(β1x
∗ − β1x) = cos(

iπ

l1
(β1x

∗ − β1x)).
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Set x̃ = β1x− β0 − β2w. We consider the case where in = 4, jn = 2, and kn = 2:

f1(x∗|x,w; θ)

=

(
ĉ00 + ĉ01 cos

π

l1
x̃+ ĉ02 cos

2π

l1
x̃

)(
â00 + â01 cos

π

l1
β1x+ â02 cos

2π

l1
β1x

)
+

4∑
i=1

(
ĉi0 + ĉi1 cos

π

l1
x̃+ ĉi2 cos

2π

l1
x̃

)(
â10 + â11 cos

π

l1
β1x+ â12 cos

2π

l1
β1x

)
× cos

iπ

l2
(β1x

∗ − β1x)

+

4∑
i=1

(
ĉi0 + ĉi1 cos

π

l1
x̃+ ĉi2 cos

2π

l1
x̃

)(
b̂10 + b̂11 cos

π

l1
β1x+ b̂12 cos

2π

l1
β1x

)
× sin

iπ

l2
(β1x

∗ − β1x)

+

(
ĉi0 + ĉi1 cos

π

l1
x̃+ ĉi2 cos

2π

l1
x̃

)(
d̂00 + d̂01 cos

π

l1
β1x+ d̂02 cos

2π

l1
β1x

)
+

4∑
i=1

(
ĉi0 + ĉi1 cos

π

l1
x̃+ ĉi2 cos

2π

l1
x̃

)(
d̂20 + d̂21 cos

π

l1
β1x+ d̂22 cos

2π

l1
β1x

)
× cos

iπ

l2
(β1x

∗ − β1x)

+
4∑
i=1

(
ĉ00 + ĉ01 cos

π

l1
x̃+ ĉ02 cos

2π

l1
x̃

)(
ê20 + ê21 cos

π

l1
β1x+ ê22 cos

2π

l1
β1x

)
× sin

iπ

l2
(β1x

∗ − β1x).

The density restriction
∫
f1(x∗|x,w; θ)dx∗dx = 1 for all θ and x,w amounts to

ĉ00â00 + ĉ00d̂00 = 1 and ĉ01 = 0, ĉ02 = 0, â0q = 0, â02 = 0, d̂01 = 0, d̂02 = 0
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Table 1: Monte Carlo Simulation of Probit model (N=500)

Parameters

DGP β0 β1 β2

DGP I: true value 0.5 -0.7 0

mean estimate 0.379 -0.777 -0.042

median estimate 0.378 -0.815 0.015

standard error 0.421 0.463 0.515

DGP II: true value -0.4 0.6 -0.2

mean estimate -0.477 0.686 -0.126

median estimate -0.385 0.595 -0.166

standard error 0.684 0.669 0.370

Note: Standard errors of the parameters are computed by the
standard deviation of the estimates across 200 simulations.

Table 2: Monte Carlo Simulation of Linear model (N=500)

Parameters

DGP β0 β1 β1 σ2

DGP III: true value 0 1 -1 0.5

mean estimate 0.004 0.809 -0.956 0.261

median estimate -0.076 0.849 -1.006 0.151

standard error 0.287 0.237 0.202 0.362

DGP IV: true value 0 -1 1 0.5

mean estimate -0.041 -1.189 0.985 0.470

median estimate -0.043 -1.225 1.004 0.509

standard error 0.076 0.287 0.097 0.156

Note: Standard errors of the parameters are computed by the standard
deviation of the estimates across 100 simulations.
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Table 3: The Demand for Food

Variable Coefficient Variable Coefficient Variable Coefficient

ln c 0.869 ln c×1992 0.004 Family size 0.027
(0.254) (0.011) (0.034)

ln c×H.s. 0.074 ln c×one child 0.021 ln pfood -0.966
dropout (0.101) (0.023) (0.428)

ln c×H.s. 0.081 ln c×two -0.025 ln ptransports 5.900
graduate (0.089) children (0.011) (7.031)

ln c×1981 0.116 ln c×three 0.009 ln pfuel+utils -0.663
(0.019) children (0.033) (0.156)

ln c×1982 0.063 One child -0.156 ln palcohol+tobacco -1.834
(0.027) (0.028) (0.582)

ln c×1983 0.051 Two children 0.325 Born 1955–59 -0.038
(0.007) (0.120) (0.010)

ln c×1984 0.048 Three children+ 0.013 Born 1950–54 -0.009
(0.016) (0.058) (0.011)

ln c×1985 0.031 H.s. dropout -0.699 Born 1945–49 -0.006
(0.003) (0.163) (0.004)

ln c×1986 0.022 H.s. graduate -0.819 Born 1940–44 -0.005
(0.021) (0.683) (0.016)

ln c×1987 0.053 Age 0.013 Born 1935–39 -0.004
(0.033) (0.021) (0.003)

ln c×1988 0.042 Age2 -0.001 Born 1930–34 0.003
(0.015) (0.007) (0.009)

ln c×1989 0.037 Northeast 0.009 Born 1925–29 -0.005
(0.018) (0.014) (0.018)

ln c×1990 0.019 Midwest -0.021 White 0.077
(0.008) (0.010) (0.023)

ln c×1991 -0.001 South -0.027 Constant -0.619
(0.005) (0.006) (0.789)

σ2 0.258
(0.189)

Note: Standard errors of the parameters are computed by the standard deviation of the estimates across
100 simulations.
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