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Abstract 

We assess the quantitative implications of the recent proposal for more robust bank capital adequacy (Admati and Hellwig, 

2013; Myerson, 2014). Our theoretical proof and evidence are consistent with the central thesis that banks become more 

stable by increasing its equity capital cushion to absorb large losses in times of severe financial stress. This analysis thus 

contributes to the ongoing policy debate on total bank capital adequacy. Our study also helps design an analytical solution 

for the default probability adjustment through the macroeconomic cycle. This analysis poses a challenge to DeAngelo and 

Stulz’s (2015) model of high optimal bank leverage. 

 

 

Andy Jia-Yuh Yeh* 

 

  

                                                           
*    Email: andyyehyayyay@yahoo.com, Brass Ring International Density Enterprise (BRIDE) and National Taiwan University (NTU), 

No.1, Section 4, Roosevelt Road, Taipei City, Taiwan. The current study has benefited from several discussions and interactions with 

Jesse Abraham, Anat Admati, Javed Ahmed, Fredrik Andersson, Jonathan Berk, Jeffrey Bohn, Allan Bollard, Nisso Bucay, Fernando 

Cela-Diaz, Sheng-Shyan Chen, Yeh-Ning Chen, Willy Chetwin, John Cochrane, Katia D’Hulster, Douglas Dwyer, Guy Eastwood, 

Simon Firestone, Michael Frith, Bart Frijns, Hughes Gilbert, Michael Gordy, Margaret Griffin, Tim Hampton, Ian Harrison, Martin 

Hellwig, Alistair Henry, Katya Homyakova, Mao-Wei Hung, Leni Hunter, Dar-Yeh Hwang, Stuart Irvine, Rantch Isquith, Ed Kane, 

Andy Kaplin, Sougata Kerr, Greg LaBlanc, Hayne Leland, Mark Levonian, Amnon Levy, Jose Lopez, Mico Loretan, Iain Maclachlan, 

John McDermott, Marian Micu, Kirsten Muetzel, Kurt Newman, Tim Ng, Adrian Orr, Mark Piche, Chellappan Ramasamy, Rebecca 

Amy Rose, Mark Rubinstein, Heather Russell, Hans Schumacher, Marius Rodriguez, Akhtar Siddique, Grant Spencer, Grant Scobie, 

Alexei Tchistyi, Alireza Tourani-Rad, Aurora Yun-Ching Tsai, Jim Twaddle, John Walter, Ian Woolford, David Wright, Mark Zandi, 

Jing Zhang, and seminar participants at the Academia-Sinica-CRETA econometrics conference, the AUT empirical finance seminar, 

the NTU PhD capital markets seminar, and the UNSW banking and finance conference. The conventional disclaimer applies to the 

current study. Any errors are the author’s own responsibility. Special thanks are due to Academia Sinica, the Ministry of Science and 

Technology, and the Institute for Information Industry for their financial support.  

http://ssrn.com/abstract=2674499
mailto:andyyehyayyay@yahoo.com


2 

 

Introduction 

The U.S. Basel Final Rule1 stipulates that the default probability should be the “bank’s empirically based best estimate of 

the long-run average of one-year default rates for the exposures in the segment, capturing the average default experience for 

exposures in the segment over a mix of economic conditions (including downturn conditions) [that are] sufficient to provide 

a reasonable estimate of the average one-year default rate over the economic cycle for the segment”. The core idea pertains 

to how the risk model developer incorporates the joint non-linear effect of macroeconomic risk covariates into the default 

probability function to measure the through-the-cycle (TTC) probability of default (PD). The conventional industry practice 

is to plug the long-term average macroeconomic risk covariates into the non-linear default probability function to compute 

the “TTC1 PD”. In comparison, an alternative approach would be to calculate each long-term average “TTC0 PD” based on 

the point-in-time (PIT) macroeconomic fluctuations through at least one complete business cycle. To the best of our 

knowledge, the extant literature does not provide an evaluation of these different approaches for the default probability 

adjustment through the macroeconomic cycle under the new Basel bank capital regime. 

 

For bank capital management, PIT default probabilities include all available and pertinent information as of a given date to 

estimate the propensity for the borrower to default on the loan over the one-year period. This information includes not only 

the bank’s expectations about the borrower’s long-run credit risk trend but also the macroeconomic and idiosyncratic shifts 

in the borrower’s credit risk profile. As a result, PIT default probabilities respond immediately to all the news that affects 

the borrower’s default risk. For this reason, PIT default probabilities are highly volatile and procyclical in contrast to TTC 

default probabilities. Relative to PIT default probabilities, TTC default probabilities show less volatility and procyclicality 

over the business cycle. TTC default probabilities primarily reflect the borrower’s long-term persistent default risk trend and 

thus do not contain the short-term transient changes in default risk that are likely to reverse with the passage of time. As 

TTC default probabilities are stable over the macroeconomic cycle, the Basel capital accord requires banks to use TTC 

default probabilities for regulatory capital measurement. This major distinction between PIT and TTC default probabilities 

affects how the bank incorporates macroeconomic risk covariates into the highly non-linear default probability model. The 

resultant default probability quantification contributes to the joint determination of bank equity capital.  

 

There are several advantages of greater equity capital for banks. First, the main purpose of stricter equity capital regulation 

is to ensure that each bank is able to contain significant losses in its asset value while the bank continues to honor deposit 

withdrawals and other debt obligations (Admati and Hellwig, 2013; Demirguc-Kunt, Detragiache, and Merrouche, 2013; 

Aginer and Demirguc-Kunt, 2014). In this light, higher equity capitalization reduces bank risk and increases its long-term 

                                                           
1  Department of the Treasury, Federal Reserve System, Federal Deposit Insurance Corporation, and Office of Thrift Supervision. (2007). 

Risk-based capital standards, advanced capital adequacy framework of Basel II. Federal Register 72(235): 69308. Available online at 
http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf. 

 

http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf
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survival probability. Second, a larger equity capital buffer requires bank owners to retain an active interest in the financial 

enterprise. This active interest induces bank owners to improve the bank’s risk management practices with fewer excessive 

risk-taking incentives due to both limited-liability and bailout expectations (Allen, Carletti, and Marquez, 2011; Coval and 

Thakor, 2005; Holmstrom and Tirole, 1997; Myerson, 2014). Third, greater equity capitalization would result in the choice 

of less risky portfolios through the lens of moral hazard because each bank has to contain large reductions in its asset value 

while there would be little incentive to transfer risk to another party (Keeley, 1990; Calomiris and Kahn, 1991; Acharya, 

Mehran, and Thakor, 2014). To the extent that discretionary regulatory forbearance counterproductively induces banks to 

increase their leverage, this high leverage funds excessively risky assets whose default probabilities significantly correlate 

with one another. The resultant equilibrium outcome is a suboptimal balance between asset substitution and debt discipline 

on managerial rent protection. This rationale suggests an important role for greater equity capitalization that helps resolve 

the moral hazard problem. In addition to the above, another reason for greater equity capital concerns the fact that higher 

equity capital requirements lead to higher endogenously determined bank survival probabilities at the interim point in time 

(Mehran and Thakor, 2010). This increase in survival likelihood suggests better cash-flow benefits from monitoring bank 

management in subsequent periods. Higher future profitability helps enhance bank value in the cross-section. Mehran and 

Thakor’s (2010) empirical analysis of gains and synergies from bank mergers and acquisitions confirms a positive relation 

between equity capital and bank value, the latter of which can be measured in terms of total bank value and its components 

such as acquisition value, goodwill, and net present value to the target bank’s shareholders.  

 

This literature review suggests that the benefits of greater equity capital requirements for banks should outweigh the costs. 

Although many proponent of the compelling case for more robust total bank capital adequacy offer qualitative perspectives 

on this important policy issue (e.g. Admati and Hellwig (2013); Kashyap, Stein, and Hanson (2010); Myerson (2014)), we 

know little about the quantitative implications of this recent proposal. In other words, the econometrician has yet to test for 

the effect of changes in major risk parameters on the typical bank’s equity capital ratio. This test requires a deeper analysis 

of the default probability adjustment through the macroeconomic cycle. To the extent that the TTC1 PD computation tends 

to underestimate the true TTC0 PD adjustment, this latter adjustment emerges as a topical subject for bank capital analysis.  

 

 

Our current study first derives the mathematical result and then uses Monte Carlo simulation to demonstrate that there is a 

significant difference between the TTC0 and TTC1 PD estimates. Insofar as the vast majority of individual PDs land in the 

convex region of the highly non-linear PD function, the mathematical notion of Jensen’s inequality suggests that the TTC1 

PDs would be much lower than the TTC0 PDs. It is important to note that the TTC0 PD adjustment by brute force can be 

computationally intensive. For the sheer volume of a typical bank’s retail and wholesale portfolios, it can be prohibitively 

costly to carry out the TTC0 PD adjustment by brute force. For this reason, we propose a convenient approximation, TTC2 
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and TTC3, via the higher-order Taylor-series expansion. Our empirical analysis suggests that this approximation is closer to 

the TTC0 PD origin by a full order of magnitude.  

 

Our analytical result suggests that the conventional industry practice introduces a downward bias in the default probability 

adjustment for bank capital measurement. In contrast to the TTC1 PD adjustment, both the TTC0 PD adjustment by brute 

force and the TTC2 and TTC3 PD alternative methods result in higher default probabilities. This evidence has important 

implications in the context of the recent proposal for banks to hold more equity capital (Admati, DeMarzo, Hellwig, and 

Pfleiderer, 2011; Admati and Hellwig, 2013; Kashyap, Stein, and Hanson, 2010; Myerson, 2014). Specifically, our results 

bolster the case for revisiting the newly introduced 3%-6% equity capital requirement under the Basel bank capital regime. 

In contrast to this rather lenient regulatory equity capital requirement, our empirical results suggest that the typical bank’s 

equity capital as a proportion of the total asset base should be as high as 22%-26%. This broad range is consistent with the 

qualitative implications of the recent proposal for banks to substantially raise their equity capital ratios that would become 

more commensurate with financial risk exposure that such banks would face in a rare severe macroeconomic recession (e.g. 

Admati and Hellwig (2013); Kashyap, Stein, and Hanson (2010); Myerson (2014)). Also, our analysis can be extended to 

help design a macroeconometric stress test for bank capital management. Overall, our research advocates support for more 

robust total capital adequacy. This endeavor thus serves as a scientific microfoundation for the central thesis that banks can 

become more stable by holding a greater capital cushion to absorb large losses in times of severe financial stress. 

 

Several recent studies connect the credit risk model with macroeconomic variables (Duffie, Saita, and Wang, 2007; Duffie, 

Eckner, Horel, and Saita, 2009; Koopman, Kraussel, Lucas, and Monteiro, 2009; Koopman, Lucas, and Schwaab, 2011). 

Bangia, Diebold, Kronimus, Schagen, and Schuermann (2002) and Nickel, Perraudin, and Varotto (2000) empirically find 

that macroeconomic fluctuations have a significant effect on credit rating transitions. Also, Pesaran, Schuermann, Treutler, 

and Weiner (2006) link the macroeconomic covariates contemporaneously with global equity returns. Pesaran et al assess 

the impact of macro shocks on the average loss distribution for each credit portfolio and then demonstrate that these macro 

shocks have an asymmetric and non-proportional effect on default risk due to the highly non-linear nature of the credit risk 

model. In this context, the extant literature does not distinguish the manner in which macroeconomic risk factors enter the 

default probability model. In particular, there is virtually no guidance on how the risk model developer should incorporate 

the joint non-linear effect of macroeconomic risk factors into the default probability adjustment through the business cycle. 

In relation to the distinction between TTC and PIT default probabilities, one can condition the default probability model on 

a set of long-term average macroeconomic risk covariates to design the TTC credit risk metric; alternatively, one can also 

use the long-term average credit risk metric of the PIT default probabilities over at least a complete macroeconomic cycle. 

In this paper, we investigate this important issue and assess these alternative approaches to integrating macroeconomic risk 

factors into the default probability model.  
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Several other studies examine the TTC properties of external credit rating measures as well as how credit rating agencies 

achieve rating stability over time (Carey and Hrycay, 2001; Loeffler, 2004, 2005; Altman and Rijken, 2004 and 2006). The 

major credit rating agencies focus on the permanent credit risk component when they assign exposures to credit risk grades. 

Altman and Rijken (2006) suggest that credit rating agencies tend to slowly adjust their credit rating assignment while this 

slow adjustment is the most important source of rating stability. Further, Loeffler (2005) suggests that the slow adjustment 

can be explained by the desire to avoid subsequent credit rating reversals. Building on Fama and French’s (1988) model of 

the effect of both permanent and transitory components on stock prices, Loeffler (2004) imposes a stress scenario on the 

transitory component when one forecasts future asset prices. Carey and Hrycay (2001) note that the TTC approach entails 

estimating default risk over a long time horizon subject to an explicit worst-case scenario. In this view, the conventional 

practice of plugging long-run average macroeconomic risk factors into the default probability model may be too lenient to 

be consistent with the spirit of the TTC default probability requirement set out in the Basel capital framework. As a result, 

we need to revisit the current default probability adjustment and its quantitative implications for bank capital management. 

 

The current U.S. federal agencies propose a target equity capital ratio in the range of 3%-5% for bank holding companies 

and up to 6% for U.S. systemically important financial institutions that receive the protection of federal deposit insurance.2 

With a unique set of plausible risk parameters, our Monte Carlo analysis suggests that the equity capital ratio for a typical 

bank should be substantially higher. While most estimates of the value-at-risk capital ratios land in the intermediate range 

of about 13%-19%, most estimates of the conditional value-at-risk capital ratios land in the range of 15%-23%. When the 

econometrician conservatively increases asset correlation from 15% to 35% for a severe downturn scenario, ceteris paribus, 

the equity capital ratio can be as high as 22%-26%. This quantitative evidence supports the recent proposal by Admati and 

Hellwig (2013), Admati (2014), Kashyap, Stein, and Hanson (2010), and Myerson (2014) to introduce a 20%-30% bank 

capital requirement. Our evidence lends credence to a scientific basis for the socially optimal introduction of substantially 

heightened equity capital requirements for banks in particular as well as financial institutions in general. This fresh strand 

of quantitative research can become part of our financial risk toolkit in due course. 

 

Overall, our analysis poses an important challenge to the central prediction of DeAngelo and Stulz’s (2015) baseline model 

of high bank leverage. Through the lens of financial risk management, the typical bank should substantially raise its equity 

capital cushion to counteract severe losses in times of extreme financial stress. From this normative perspective, high bank 

leverage cannot be socially optimal because the typical bank runs the risk of not being able to absorb large financial losses 

in a rare macroeconomic downturn such as the recent Global Financial Crisis. In contrast to DeAngelo and Stulz’s (2015) 

emphasis on the important role that most banks play in producing aggregate liquid claims, our current study points out that 

                                                           
2  Department of the Treasury, Federal Reserve System, and Federal Deposit Insurance Corporation. (2007). Regulatory capital rules: 

regulatory capital, supervisory revisions to the supplementary leverage ratio. Federal Register 79(187): 57726. Available online at 
http://www.gpo.gov/fdsys/pkg/FR-2014-09-26/pdf/2014-22083.pdf. 

 

http://www.gpo.gov/fdsys/pkg/FR-2014-09-26/pdf/2014-22083.pdf
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the typical bank’s high leverage ratio suggests an insufficient equity capital buffer for extreme loss absorption in a rare but 

plausible economic recession. Our empirical analysis corroborates the recent proposal for most banks to substantially raise 

their equity capital positions due to precautionary concerns (Admati, DeMarzo, Hellwig, and Pfleiderer, 2011; Admati and 

Hellwig, 2013; Kashyap, Stein, and Hanson, 2010; Myerson, 2014). 

 

We organize the remainder of this paper in the following order. Section 1 describes the Taylor series expansion of the logit 

model with macroeconomic fluctuations. This mathematical derivation provides the theoretical foundation for our Monte 

Carlo simulation of the different TTC PD adjustments through the macroeconomic cycle. Section 2 offers the comparative 

statics for the relationship between PD and asset correlation. Section 3 places the current study in the context of the recent 

literature and then clarifies our main contributions. Section 4 describes our Monte Carlo simulation of default probabilities 

for a synthetic risky asset portfolio based on the asymptotic single risk factor model. In this section, we describe how we use 

Monte Carlo simulation to gauge the equity capital requirements for the baseline and alternative TTC PD adjustments. 

Section 5 discusses the quantitative results in light of the non-trivial difference in capital requirements between the TTC1 

PD status quo and its alternatives such as TTC0, TTC2, and TTC3. Section 6 concludes the current study in the context of 

the recent proposal for banks to substantially raise their equity capital. This section offers a few comments and suggestions 

for future research. 

 

 

 

1. A general default probability model with systematic macro fluctuations 

Our narrative characterizes the Taylor series expansion of the logit model with macroeconomic fluctuations. This general 

expansion provides a higher-order analytic solution to the default probability adjustment through the macroeconomic cycle 

under the Basel capital framework. In effect, the solution better approximates the long-term average of the point-in-time 

default probabilities in contrast to the default probability based on the long-run average macroeconomic factors. Not only 

does this Taylor series expansion adequately correct for the highly non-linear nature of the default probability function, but 

this expansion also raises the capital output by an order of magnitude insofar as most of the default probabilities land in the 

convex region of the logit default function. To the extent that the macroeconomic fluctuations have a non-trivial impact on 

the default probability estimation, the difference in the bank’s capital output can be quite substantial. This analytical result 

is applicable to the through-the-cycle (TTC) probability of default (PD) adjustment for both a bank’s wholesale and retail 

loan portfolios. 
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Under the Basel capital framework3, the TTC PD “would be the bank’s empirically based best estimate of the long-run 

average of one-year default rates for the exposures in the segment, capturing the average default experience for exposures 

in the segment over a mix of economic conditions (including economic downturn conditions) that are sufficient to provide 

a reasonable estimate of the average one-year default rate over the economic cycle for the segment”. It is thus consistent 

with this Basel requirement to compute the TTC PD as the long-term average of the point-in-time PDs in stark contrast to 

the default probability based on the long-run average macroeconomic covariates. We derive the Taylor series expansion of 

this TTC PD requirement: 

 

0TTCPD  












t

s

sPD
t 1

1
 

 

   
 

 
 

 
 

 
 



























t

s

sss zwo
dz

zwd
zz

dz

zwd
zz

dz

zwd
zzzw

t 1
3

3
3

2

2
2

6

1

2

11 


 

   
 

 
 

 
 

...
1

6

11

2

11

1
3

3
3

1
2

2
2

1




































 



t

s

s

t

s

s

t

s

s
dz

zwd
zz

tdz

zwd
zz

tdz

zwd
zz

t
zw




 

   
 

 
 

...
1

6

11

2

1

1
3

3
3

1
2

2
2
























 



t

s

s

t

s

s
dz

zwd
zz

tdz

zwd
zz

t
zw


  

 

 
 

 
 

...
1

6

11

2

1

1
3

3
3

1
2

2
2

1 






















 



t

s

s

t

s

sTTC
dz

zwd
zz

tdz

zwd
zz

t
PD


   

 

 
 

   
 

...var
6

1
var

2

1
3

3
2/3

2

2

1 






dz

zwd
zzskew

dz

zwd
zPDTTC


     Eq(1) 

 

 

where PDTTC0 denotes the TTC0 PD or the long-run average of the point-in-time PDs through the cycle, PDs denotes the 

point-in-time PD at time s={1,2,3…t}, λ(.) is the logit transformation of a linear combination of covariates into the default 

probability metric, w is a linear combination of non-macroeconomic covariates such as the current loan-to-value ratio and 

                                                           
3  Department of the Treasury, Federal Reserve System, Federal Deposit Insurance Corporation, and Office of Thrift Supervision. (2007). 

Risk-based capital standards, advanced capital adequacy framework of Basel II. Federal Register 72(235): 69308. Available online at 
http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf. 
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the FICO score, z is a linear combination of macroeconomic covariates such as the unemployment rate and the house price 

variation, o(.) is the error from the higher-order Taylor series approximation, var(z) and skew(z) are the respective variance 

and skewness of the linear combination of macro fluctuations. For the sake of mathematical simplicity, we consider up to 

the third-order Taylor series expansion. We observe from Eq(1) that PDTTC1 is equivalent to the first-order approximation 

of PDTTC0. The higher-order terms involve both the variance and skewness of macroeconomic factors and the second-order 

and third-order derivatives of the logit function with respect to the linear combination of macroeconomic fluctuations. For 

our current analysis, we consider both the second-order and third-order Taylor series to derive PDTTC2 and PDTTC3. These 

second-order and third-order terms better approximate the long-run average of the point-in-time PDs (i.e. PDTTC2≈PDTTC0 

and PDTTC3≈PDTTC0): 
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We now turn to the derivatives of the logit function. We first derive the first derivative of the logit function and then use this 

result to derive the higher-order derivatives. As the logit function of a random variable h, λ(h) follows the form below: 
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where the random variable h is a linear combination of both macroeconomic and borrower-specific covariates. The next step 

is to derive the first derivative of the logit function dλ(h)/dh through the use of the chain rule: 
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We make use of the above analytical result in Eq(5) to derive the second-order and third-order derivatives of the logit 

function d2λ(h)/dh2 and d3λ(h)/dh3: 
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We substitute the second-order and third-order derivatives in Eq(6) and Eq(7) into Eq(3) to complete the higher-order Taylor 

series expansion of the long-run average of the point-in-time PDs through the cycle: 
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We can observe from Eq(8) that the Taylor series expansion better approximates the long-run average of the point-in-time 

PDs through the cycle, i.e. PDTTC3≈PDTTC0, by incorporating both the variance and skewness of macroeconomic factors. Not 

only does this Taylor series expansion correct for the highly non-linear nature of the logit default probability function, but 

this expansion also raises the capital output by an order of magnitude insofar as most of the default probabilities land in the 

convex region of the logit function. To the extent that the macroeconomic factors serve as important risk covariates in the 
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default probability estimation, the difference in equity capital output can be substantial. The analytical result applies to the 

TTC PD adjustments for both a bank’s wholesale and retail loan portfolios. 

 

 

 

2. Comparative statics for the close relation between default probability and asset correlation 

We develop a simple and intuitive model to derive the comparative statics for the bank’s equity capital curve as a function 

of both PD and asset correlation. These comparative statics arise from maximizing the primal-dual objective function that 

characterizes the wedge between the bank’s equity capital curve and its envelope. The equity capital function embeds both 

PD and asset correlation as the major risk parameters. While the former determines the borrower’s propensity to default on 

his or her risky asset with respect to the macroeconomic shocks and asset-specific attributes, the latter governs the relative 

likelihood that the rare but plausible extreme default event may occur. This characterization applies the envelope theorem 

to deduce an inequality that sheds light on the empirical relation between PD and asset correlation.  

 

We define κ*(λ)= κ*(ρ*(λ), λ) as the envelope for the numerous capital curves κ(ρ(λ), λ) for all possible default probabilities 

λ where κ(.) is the equity capital curve as a concave and twice-differentiable function of both PD and asset correlation, ρ(.) 

is the asset correlation function of PD, and λ is the asset-specific default probability (PD). This characterization suggests 

κ(ρ(λ), λ)≤ κ*(λ) = κ*(ρ*(λ), λ). Then we can define the primal-dual objective function Q(ρ(λ), λ) as the difference between 

κ(ρ(λ), λ) and κ*(λ): 
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This primal-dual objective function reaches its maximum value of zero when ρ(λ)=ρ*(λ) such that Q(ρ*(λ), λ)= κ*(ρ*(λ), λ)–

κ*(λ)=0. The first-order condition holds when the partial derivatives ∂κ(ρ(λ), λ)/∂λ and ∂κ*(λ)/∂λ are equal to each other: 
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In addition to the above, the first-order condition holds when ρ(λ)=ρ*(λ) for different default probabilities λ. The sufficient 

second-order conditions suggest that the Hessian matrix of second partial derivatives of Q(ρ(λ), λ) with respect to ρ(λ) and λ 

is negative definite: 
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We use implicit differentiation to derive the second partial derivative ∂2κ*(λ)/∂λ2: 

 













2

*2




 

  














2

*2 ,




 

   







































2

2*













 

   






































2

2*2












            Eq(15) 

 

where the last equality holds by Young’s theorem and the partial derivative ∂ρ*/∂λ in curly brackets is the marginal change 

in asset correlation with respect to a marginal change in default probability λ. This latter partial derivative is the theoretical 

relation between PD and asset correlation. Substituting Eq(14) into Eq(15) yields the inequality below: 
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Eq(16) offers a major economic insight into the marginal relation between PD and correlation. The theoretical association 

between PD and asset correlation (i.e. the partial derivative ∂ρ*/∂λ in curly brackets) should be in the same direction as the 

marginal effect of PD on the first-order envelope response of equity capital to asset correlation ∂(∂κ/∂ρ)/∂λ=∂2κ/∂ρ∂λ. Then 

we can deduce the theoretical association between PD and asset correlation from this second-order cross-partial derivative: 
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Several recent studies shed light on the appropriate size of asset correlation for incorporating some margin of econometric 

conservatism in the risk capital quantification. A general rule of thumb suggests that an asset correlation value of 15% may 

reflect a lack of conservatism in the value-at-risk equity capital ratio (Hansen, Van Vuuren, Ramadurai, and Verde, 2008). 

In contrast, Zhang, Zhu, and Lee (2008) find that the magnitude of default-implied asset correlation is significantly higher 

than what some prior research suggests. There is a close alignment between Zhang, Zhu, and Lee’s (2008) default-implied 

asset correlation and the Basel benchmark. Also, Cai, Levy, and Patel (2009) empirically find that global asset correlation 

seems to be more volatile than what the conventional Basel systematic risk correlation suggests. Lopez (2004) empirically 

finds a negative relation between PD and asset correlation, whereas, Dietsch and Petey (2004) and Lee, Wang, and Zhang 

(2009) provide contradictory evidence on the empirical nexus between PD and asset correlation. Specifically, Lee, Wang, 

and Zhang (2009) report that there is no significantly negative association between PD and asset correlation for corporate 

exposures while there is a reliably positive relation between PD and asset correlation for commercial real estate and retail 

exposures. A significantly positive association between PD and asset correlation appears in several more recent studies for 

North America, Europe, Japan, and emerging markets as well as a wide variety of asset classes such as public and private 

corporate exposures, small-to-medium enterprise exposures, commercial real estate exposures, residential first mortgages, 

home equity loans, auto loans, credit cards, consumer loans, student loans, and sovereign exposures (Huang, Lanfranconi, 

Patel, and Pospisil, 2012; Lanfranconi, Patel, Huang, Levy, and Pospisil, 2013; Lanfranconi, Pospisil, Kaplin, Levy, and 
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Patel, 2014; Huang, Lanfranconi, Lee, Levy, Mitrovic, Ozkanoglu, Pospisil, Patel, and Yang, 2015; Huang, Pospisil, and 

Hong, 2015). All of these studies suggest that this area is an important aspect of financial risk model design under the new 

Basel capital regime. 

 

Our mathematical derivation provides a simple and intuitive theoretical prediction of the marginal relation between PD and 

asset correlation. The theoretical relation between PD and asset correlation should be in the same direction as the marginal 

effect of PD on the first-order envelope response of equity capital to asset correlation. When this latter first-order envelope 

response is positive, we expect to see a positive relation between PD and asset correlation. When this first-order envelope 

response is negative, we expect to see a negative nexus between PD and asset correlation. In sum, the non-linear negative 

relation between PD and asset correlation first proposed by Lopez (2004) and then set out in the Basel capital framework 

arises as a special case of our sufficiently general theoretical proof. Several empirical studies confirm this economic thread 

(e.g. Lee et al (2009); Huang et al (2012); Lanfranconi et al (2014)). 

 

 

 

3. Conceptual connections between the current study and the prior capital structure literature 

In the absence of bankruptcy costs, taxes, and other market frictions, Modigliani and Miller (1958) analytically posit that a 

firm’s market value is independent of the mix of debt and equity. At its core, this capital-structure irrelevance proposition 

has been the baseline model for corporate finance. The conditions are so stringent that they are not meant to be an accurate 

representation of reality. Alternatively, this model allows the econometrician to be precise about which deviations from the 

above conditions is at work (Kashyap, Stein, and Hanson, 2010). For instance, the tax shields from debt create an incentive 

for the firm to lever up while high leverage inadvertently raises the firm’s bankruptcy and distress costs. On balance, these 

forces offset each other at least to some extent and result in an optimal leverage ratio in the canonical trade-off model of 

capital structure (Leland, 1994; Leland and Toft, 1996).4 

 

A body of more recent empirical literature assesses the speed of partial adjustment toward the optimal target leverage ratio. 

This literature suggests a wide array of econometric techniques for testing the relative speed of partial adjustment toward 

target leverage. Examples are the Fama-MacBeth cross-sectional regressions (Fama and French, 2002; Baker and Wurgler, 

2002; Welch, 2004), mean-differencing panel regressions (Flannery and Rangan, 2006), dynamic GMM panel regressions 

(Antoniou, Guney, and Paudyal, 2008), and long-differencing panel regressions (Huang and Ritter, 2009). These empirical 

                                                           
4   Some recent evidence highlights the importance of financial flexibility in the form of both available debt capacity and share issuance 

that can exert a first-order impact on corporate capital structure (DeAngelo, DeAngelo, and Whited, 2011; McLean, 2011; Denis and 

McKeon, 2012). 
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studies indicate a broad gamut of speed estimates from 3 years to 20 years. Leverage is highly persistent5 across quartiles 

(Lemmon, Roberts, and Zender, 2008; DeAngelo and Roll, 2015), so the econometrician needs the use of Hahn, Hausman, 

and Kuersteiner’s (2007) long-differencing panel regressions to account for this persistence. Specifically, Huang and Ritter 

(2009) find empirical support for the dynamic trade-off model with slow target leverage adjustment speed estimates from 5 

years to 7 years ceteris paribus. Notwithstanding this recent strand of empirical literature on corporate capital structure, no 

capital-structure theory adequately explains persistently high bank leverage, slow convergence toward target bank leverage, 

and a modest effect of higher bank capital on loan growth and equity cost estimation (Berrospide and Edge, 2010; Francis 

and Osborne, 2009).  

 

Berrospide and Edge (2011) empirically find that a typical U.S. bank with an 11% equity capital ratio and a target ratio of 

10% would grow the balance sheet by no more than 0.6%. The same set of evidence suggests that this typical bank would 

shrink its capital by 1% in the subsequent year relative to an otherwise substantially similar bank with zero capital surplus. 

Francis and Osborne (2009) report that the reduction in U.K. aggregate loan supply in response to a 1% increase in bank 

equity capital is only 1.2%. In other words, a typical British bank that increases its equity capital from 10% to 11% would 

face a 1.2% decline in aggregate loan supply ceteris paribus. Francis and Osborne (2009) infer from their evidence that the 

countercyclical capital requirement would have constrained bank credit growth with a concomitant increase in bank equity 

capital and consequently better systemic stability at the start of the global financial crisis in late-2007.  

 

 

                                                           
5  An alternative theoretical model of corporate capital structure is the pecking-order theory. In this theory of Myers (1984) and Myers 

and Majluf (1984), there is no optimal corporate capital structure. If there is an optimum, the cost of deviating from this optimum is 

insignificant in contrast to the cost of raising external finance. Raising external finance is costly because corporate managers have 

better information about the corporation’s recent prospects. Due to this information asymmetry, outside investors rationally discount 

the firm’s stock price when the firm issues equity in lieu of debt. To avoid this discount, corporate managers regard equity as the last 

resort. The Myers-Majluf firm first uses up internal funds, then uses up debt, and finally resorts to equity. In the absence of valuable 

investment opportunities, the firm retains profits and builds up financial slack to avoid having to raise external finance in the future. 

A firm raises debt to fund its valuable investment projects if there is insufficient internal finance to support these projects. Following 

the pecking order, a firm adjusts the debt ratio due to the need for external funds, but not because of an attempt to reach an optimal 

mix of debt and equity (Myers, 1984; Myers and Majluf, 1984; Shyam-Sunder and Myers, 1999).  

 

 Contrary to the prediction of the pecking-order model, Fama and French (2002) find a significantly positive association between the 

target and future leverage wedges. This evidence suggests the existence of an optimal debt ratio in stark contrast to the prediction of 

the pecking order theory. However, the mean reversion of leverage is 7%-10% per year for dividend payers and 15%-18% per year 

for dividend non-payers. This rather slow speed of mean reversion toward target leverage bolsters the dynamic trade-off model with 

a soft target debt ratio. Further, Fama and French (2005) find that net equity issues are commonplace (i.e. equity is not a last resort). 

Since equity issues are ubiquitous, most equity issuers are not under financial duress. Fama and French (2005) infer that the pecking 

order model breaks down at least partly because there are many ways for firms to issue equity with low transaction costs and modest 

information asymmetries. Any forces that result in equity issuance not as a last resort invalidate the pecking order model. The more 

recent capital structure literature acknowledges the view that both the trade-off and pecking-order models of capital structure each 

represent at least some element of truth (Fama and French, 2005; Huang and Ritter, 2009). In essence, the horse race between these 

theories tells us little about the fact that banks maintain high leverage in spite of their exposure to severe losses in turbulent times of 

financial stress.  
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Why is the proportion of equity capital as a percentage of the asset base for banks much lower than the typical counterpart 

for non-financial companies? Our subsequent simulation suggests that a bank’s equity capital ratio should be substantially 

higher to absorb severe losses in times of financial stress. Specifically, both the value-at-risk and conditional value-at-risk 

equity capital ratios exceed the newly proposed 3%-6% hurdle by an order of magnitude. When the econometrician raises 

asset correlation from 15% to 35% in the baseline simulation, the value-at-risk and conditional value-at-risk equity capital 

ratios jump to 22%-26%. This evidence lands in the broader range of 20%-30% that Admati and Hellwig (2013), Kashyap, 

Stein, and Hanson (2010), Hanson, Kashyap, and Stein (2011), and Myerson (2014) suggest from a qualitative perspective. 

Although we do not attempt to pursue perfect accuracy in our simulation, this analysis sheds fresh light on the broad gamut 

of equity capital ratios that would be commensurate with a typical bank’s exposure to extreme losses in a severe financial 

downturn. As a result, banks should consider a positive tilt toward greater equity usage in their capital structure decisions.  

 

A bank’s value-at-risk or conditional value-at-risk fluctuates procyclically over time as total loan supply amplifies during a 

credit boom and declines during a credit bust. These boom-bust fluctuations arise as a consequence of how banks manage 

their leverage decisions in reaction to volatile macroeconomic conditions (Adrian and Shin, 2013). Also, leverage tends to 

move procyclically to the extent that debt overhang creates several implications for corporate investment (Korteweg, 2010; 

Ivashina and Scharfstein, 2010; Admati and Hellwig, 2013: 245). First, overleverage prevents a corporation from investing 

in valuable investment projects because some debt covenants prohibit such engagement.6 In this light, debt overhang can 

have a first-order impact on corporate investment. Second, excessive debt usage creates moral hazard, propagates default 

contagion, and sometimes forces banks to tilt toward highly risky investment projects (Admati and Hellwig, 2013; Admati, 

2014; Myerson, 2014). To restore corporate liquidity, banks have a perverse incentive to take on too much leverage due to 

the view that it might be easier for banks to strengthen their equity capital positions via fire sales of unprofitable non-core 

assets (Brunnermeier, 2009). A wave of fire sales breeds massive asset price depreciation and default contagion within the 

financial sector. Third, what banks need to hedge their asset portfolios against macro shocks is the use of countercyclical 

capital buffers, dynamic loan-loss provisions, and contingent convertible instruments (Dewatripont and Tirole, 2012). The 

above discussion sheds light on the importance of higher moments in the bank’s default probability adjustment through the 

macro cycle. To the extent that deeper recessions tend to follow more credit-intensive expansions (Jorda, Schularick, and 

Taylor, 2013), banks should recharge their capital cushions by curtailing dividend payout and discretionary share buyback 

after a substantial deterioration in stock valuation (Acharya, Gujral, Kulkarni, and Shin, 2011). These macro hedges help 

complement one another in the pursuit of better systemic stability that results from greater bank equity usage.  

 

 

  

                                                           
6  For instance, banks with more deposit debt reduced their loan syndicates by less than did banks without as much access to this stable 

source of finance during the global financial crisis of 2008 (Ivashina and Scharfstein, 2010). 
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4. Monte Carlo simulation of the asymptotic single risk factor model 

We simulate the default probabilities for a synthetic asset portfolio. Then we build an empirical default probability model 

based on the observable systematic and idiosyncratic risk factors. Not only does this analytic approach allow us to assess the 

relative accuracy of the empirical default probability model, but this approach also helps gauge the impact of each TTC PD 

adjustment on the resultant bank capital requirement. Our Monte Carlo simulation rests upon the standard derivation of the 

asymptotic single risk factor model. To quantify a bank’s credit risk, we start with the distribution of the bank’s asset value 

over the chosen one-year time horizon (Merton, 1974; Vasicek, 1987, 1991, 2002; Gordy, 2003; Gordy and Howells, 2006; 

Bohn and Stein, 2009: 410-414). In this context, the company’s asset value is the stochastic process:  
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where A0 and At denote the asset values observed at the respective start and end of the time horizon t=1, μ is the typically 

positive asset value drift, σ is the asset volatility, and the firm-specific error term e is a weighted average of a common 

systematic random factor m and an idiosyncratic random factor ε. The latter property gives rise to the standard setup of the 

asymptotic single risk factor model (Vasicek, 1987, 2002; Gordy and Howells, 2006; Bohn and Stein, 2009: 410-414): 

 

  1me                 Eq(20) 

 

where ρ measures the percentage of the company’s asset return variance due to the systematic risk factor m that converges 

toward a standard normal random variable m~N(0,1), and ε~N(0,1) is the idiosyncratic risk factor that serves as a standard 

normal random variable. A default event occurs when the firm-specific return error term falls below the default trigger 

threshold e<d=N-1(udp) where d denotes the default trigger threshold, N-1(.) is the cumulative normal inverse distribution 

function, and udp is the unconditional default probability. We decompose the systematic and idiosyncratic risk factors m and 

e into their observable and unobservable components through the use of correlation values φ and ξ. This specification is 

similar to Koopman et al’s (2011) use of an unobservable frailty factor: 

 

uo mmm   1                Eq(21) 

uo   1                Eq(22) 
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where mo~N(0,1) and mu~N(0,1) are the respective observable and unobservable components of the systematic risk factor, 

εo~N(0,1) and εu~N(0,1) are the respective observable and unobservable components of the idiosyncratic risk factor, and the 

parameters φ and ξ are the correlation values for linking the respective observable and unobservable components of the 

systematic or idiosyncratic risk factor. It is important to note that we interpret the observable component of the systematic 

risk factor as the joint macroeconomic risk factor. In practice, the house price variation, the unemployment rate, the GDP 

growth rate and so forth serve as proxies for this joint macroeconomic risk factor. In contrast, the unobservable component 

of the systematic risk factor can be viewed as the sector-specific risk factor that cannot be easily identified in the empirical 

data. Likewise, we can identify the observable component of the idiosyncratic risk factor in terms of several loan-level and 

borrower-specific risk drivers such as the FICO score and the current loan-to-value ratio. The unobservable component of 

the idiosyncratic risk factor subsumes all other unidentifiable loan-level and borrower-specific drivers. This decomposition 

allows us to embed the observable variation in the systematic and idiosyncratic risk factors in a logit regression model of 

default probabilities. In the subsequent sections, we estimate an empirical logit regression model to score the point-in-time 

default probabilities for each annual cohort. These PIT PDs can then be used to score the TTC0 PDs in comparison to the 

TTC1 PDs that are based on the long-run average macroeconomic risk realizations. Our goal is to compare the TTC0 and 

TTC1 PDs as well as the alternative TTC2 and TTC3 PDs in the context of bank capital management. 

With the above model setup, we then expand the empirical default rate below: 
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Eq(20), Eq(21), Eq(22), and Eq(23) describe our Monte Carlo simulation of empirical default rates for a synthetic portfolio. 

For computational simplicity, we set the asset correlation value ρ=15%7 and the unconditional default probability udp=5% 

for the synthetic loan portfolio. With no a priori expectation about the correlation values φ and ξ, we set both φ=50% and 

ξ=50% to assign equal weights to the respective observable and unobservable components. To ensure consistency with the 

spirit of the long-term TTC PD requirement set out in the Basel capital accord, we focus on the 1,000-year multi-period 

horizon. For each of the 1,000 annual cohorts, we simulate a single systematic risk factor as a standard normal random 

variable in conjunction with 10,000 idiosyncratic standard normal random variables. Eq(20) helps compute the residual 

realizations for the 10,000 loans. If the residual realization is less than N-1(udp)=N-1(5%)=–1.64485362695, this realization 

triggers a default event. For each of the 1,000 annual cohorts, the synthetic empirical default rate is thus the number of 

default events divided by the total number of loans. Then we run this simulation for 1,000 annual cohorts. This replication 

is equivalent to simulating the empirical default likelihood for a given asset over 1,000 years in accordance with the Basel 

capital framework that focuses on the one-in-a-thousand-year rare event. 

 

In order to arrive at the consistent results, we set the random seed at exp(π). In the subsequent sections, we run the k-means 

clustering segmentation from 5 segments to 100 segments in increments of a single segment. This segmentation seeks to 

meet the Basel Final Rule8 that the through-the-cycle default probability needs to be the “bank’s empirically based best 

estimate of the long-term average of one-year default rates for the exposures in the segment…”. This latter phrase requires 

each bank to concoct a clustering algorithm to group individual default probabilities into a reasonable number of segments. 

Then we can calculate the bank’s regulatory capital requirement based on this algorithmic segmentation.9 For the k-means 

                                                           
7  The Basel capital framework specifies various asset correlation values for different retail and wholesale loan portfolios. The asset 

correlation value for a given portfolio of exposures is an estimate of the degree to which any unanticipated changes in the financial 

conditions of the underlying obligors of the exposures are correlated. For a portfolio of exposures with the same risk parameters, a 

larger asset correlation value generally suggests less diversification within the portfolio, greater overall systematic risk, and a higher 

risk capital requirement. For instance, the asset correlation values are 15% for residential retail mortgages, 4% for retail revolving 

exposures such as credit cards, 3% to 13% for retail other exposures, 12% to 18% for wholesale high-value commercial real estate 

exposures, and 12% to 24% for wholesale other exposures.  

 
8  Department of the Treasury, Federal Reserve System, Federal Deposit Insurance Corporation, and Office of Thrift Supervision. (2007). 

Risk-based capital standards, advanced capital adequacy framework of Basel II. Federal Register 72(235): 69308. Available online at 
http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf. 

 
9  Under the new Basel bank capital framework, a bank must group its retail exposures into multiple segments with homogeneous risk 

characteristics. The U.S. regulatory agencies believe that a bank may use the internal models, including the loan-level risk parameter 

estimates such as PD and LGD, to group exposures into the resultant segments with homogeneous risk attributes. In contrast to the 

conventional decision tree method, we design a new algorithmic model for credit portfolio segmentation. This new model identifies 

the optimal number of segments, sorts the individual loan exposures into the various segments, and then leads to a greater degree of 

risk homogeneity in comparison to the baseline equal-bin and quantile-bin schemes. We analyze the Monte Carlo asset correlations 

for the synthetic asset segments over time to better assess the implications for bank capital measurement. The k-means clustering 

algorithmic model for credit portfolio segmentation results in some capital relief that serves as an incentive for the bank to invest in 

this algorithmic segmentation. This positive outcome accords with the principle of statistical conservatism set out in the Basel bank 

capital framework. Lastly, our algorithmic segmentation applies to the cardinal wholesale commercial loan masterscale for the main 

risk parameters such as PD and LGD. 

 

http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf
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clustering algorithm, we set the maximum number of iterations at 100 to ensure that the global convergence criterion is met 

all the time. The k-means algorithmic segmentation maximizes the Calinski-Harabasz ratio of inter-group variance to intra-

group variance. In other words, the optimal k-means algorithmic segmentation selects the centroids for different PD segments 

such that all of the centroids are sufficiently far apart from one another while each centroid attracts numerous PD estimates 

with close proximity. This algorithmic segmentation allows us to gauge the baseline and alternative TTC equity capital 

requirements for each segment.  

 

We extend Eq(23) to compute the common equity capital ratio κ as a percentage of the total asset balance or the exposure at 

default (EAD)10: 
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           Eq(24) 

 

where N(.) is the cumulative normal distribution function, PD is the empirical default probability based on the logit regres- 

sion model, LGD=56.8% is the flat downturn LGD11, ρ=15% is the asset correlation value, and α=99.9% is the confidence 

interval. Eq(24) allows us to calculate the asset-equivalent or size-weighted-average capital risk weight for each segment.12 

This capital risk weight can be viewed as a measure of the bank’s financial leverage that reflects the relative proportion of 

common equity in the total asset base. We compare and contrast the equity capital results for the alternative TTC0, TTC1, 

TTC2, and TTC3 PD adjustments. Our primary objective is to ferret out a scientific reason for the potential downward bias 

in the PD estimation that can arise from the conventional Basel TTC requirement.  

 

In addition to the value-at-risk equity capital ratio, we compute the conditional value-at-risk equity capital ratio. This latter 

equity capital ratio covers the average extreme loss that is conditional upon the occurrence of a rare event that the potential 

                                                           
10  Department of the Treasury, Federal Reserve System, Federal Deposit Insurance Corporation, and Office of Thrift Supervision. (2007). 

Risk-based capital standards, advanced capital adequacy framework of Basel II. Federal Register 72(235): 69308. Available online at 
http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf. 

 
11  Qi and Yang (2008) provide this estimate of the flat downturn LGD for residential mortgages. To the best of our knowledge, this flat 

downturn LGD is the highest measure of default loss percentage in the financial risk literature. For the basic purpose of econometric 

conservatism, we use this measure to calculate the capital requirement κ as a percentage of the total asset base.  

 
12  We refer to κ as the equity capital ratio. This equity capital ratio κ differs from the conventional asset risk weight κ0 as κ0=κ/8%. For 

our purposes, we can conceptualize the equity capital ratio κ as one minus the leverage ratio insofar as the outstanding loan balance 

is the only drawn amount or the exposure at default. The exceptions are corporate, home equity, and other lines of credit that allow 

the debtor to progressively borrow more up to the full amount of credit line commitment. At any rate, our focus on the equity capital 

ratio κ helps simplify the analysis to the ubiquitous use of the total asset base as the exposure at default.  

 

http://www.gpo.gov/fdsys/pkg/FR-2007-12-07/pdf/07-5729.pdf
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loss exceeds the value-at-risk metric. To this end, we replace N–1(α) with the conditional value-at-risk correction to modify 

the equity capital computation below: 

 

  





2

2
exp

21
















N

R                Eq(25) 

 

 
LGDPD

RPDN
N










































1

1

            Eq(26) 

 

 

For estimating the default probability model, we run a logit regression model of the binary default event on the observable 

systematic and idiosyncratic risk factors mo and εo (Campbell et al, 2008: Koopman et al, 2011). Then we can use the logit 

regression model with both mo and εo to score the point-in-time PDs for each of the 1,000 annual cohorts: 
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where PD is the point-in-time PD, mo and εo are the respective observable systematic and idiosyncratic risk factors, v is the 

residual term, and βo, βm, and βε are the logit coefficients for the panel estimation of Eq(27). This logit model allows us to 

compute each TTC0 PD as the long-term average measure of the point-in-time PDs for each of the 10,000 synthetic assets. 

Then we compare this TTC0 PD to the TTC1 PD that takes into account a linear combination of the long-term average 

macroeconomic risk covariates. In addition, we compute the TTC2 and TTC3 PD approximations set out in Eq(2), Eq(3), 

and Eq(8). Lastly, we use Eq(24) and Eq(26) to gauge the value-at-risk or conditional value-at-risk equity capital ratio as a 

percentage of the total asset balance or the exposure at default (EAD).  
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5. Default probability and equity capital evidence with algorithmic segmentation 

For a synthetic loan portfolio of 10,000 risky assets, we simulate each asset’s default experience over 1,000 annual cohorts. 

Our next step is to run the logit regression of each binary default realization on the observable components of systematic 

macroeconomic and sector-specific idiosyncratic risk factors. With the maximum-likelihood logit coefficient estimates, we 

compute the default probability for each risky asset in a given year. This point-in-time (PIT) method allows us to compute 

the TTC0 PD for each risky asset as the long-run average of PIT PDs over multiple macroeconomic cycles. Also, we carry 

out similar calculations to gauge the TTC1, TTC2, and TTC3 PDs for each risky asset. While the TTC1 PD is equal to the 

default probability function of a given set of long-term average observable systematic macroeconomic and sector-specific 

idiosyncratic risk factors, we use the TTC2 and TTC3 PD adjustments to approximate the TTC0 PD origin. These TTC PD 

estimates serve as inputs in the regulatory capital formulae with 99.9% confidence. For better econometric conservatism, we 

quantify both the value-at-risk and conditional value-at-risk equity capital ratios (i.e. we express each capital estimate as a 

proportion of the total asset base). At the core of this quantitative analysis, we are interested in the extent to which the capital 

estimates vary in response to changes in the key risk parameters such as the TTC PD estimates, the asset correlation value, 

and the correlation values for the observable and unobservable parts of each of the systematic and idiosyncratic risk factors. 

One of the primary purposes of this quantitative analysis is to assess whether the TTC2 and TTC3 PD adjustments adequately 

correct for the TTC1 capital underestimation bias relative to the TTC0 capital ratio in accordance with the spirit of the TTC 

regulatory requirement set out in the Basel capital framework. Further, our sensitivity analysis helps isolate the standalone 

effect of each input on the capital estimates. This analysis contributes to a better triangulation that sheds fresh light on 

whether asset correlation in particular, and default contagion in general, causes most gyrations in the equity capital curves. 

In essence, the above twin objectives require the use of a reasonably accurate default probability model.  

 

 

5.1 Monte Carlo simulation and k-means algorithmic segmentation 

Table 1 presents the key parameter values for the Monte Carlo simulation of default probabilities based on the asymptotic 

single risk factor model. We set the baseline correlation values ρ=15%, φ=50%, and ξ=50%. For the subsequent sensitivity 

analysis of bank capital estimates, we consider different sets of correlation permutations: ρ={15%, 20%, 25%, 30%, 35%}, 

φ={40%, 45%, 50%, 55%, 60%}, and ξ={40%, 45%, 50%, 55%, 60%}. With 5 separate sets of equity capital estimates for 

each baseline correlation permutation, we end up with 15 sets of logit regressions, PD estimates, and equity capital results.  

 

Figure 1 displays the time-series plots of both the systematic risk factor and its observable and unobservable components 

over 1,000 annual cohorts. Figure 1 indicates that the systematic risk factor moves in tandem with the joint gyrations in the 

observable and unobservable components. The majority of the systematic, macroeconomic, and sector-specific risk factors 

land within the 95% confidence interval around zero. Only the first of these latter random variables, the observable part of 
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systematic risk is one of the explanatory variables in the logit default probability model. This observable variable captures 

a linear combination of systematic macroeconomic fluctuations such as GDP growth, unemployment, house price variation, 

and so forth. The other explanatory variable is the observable part of idiosyncratic risk that represents a linear combination 

of asset-specific attributes such as FICO, loan-to-value, debt-to-income, and so forth. In brief, these variables help develop 

a reasonably accurate logistic default probability model for our subsequent equity capital analysis.  

 

Table 2 presents the logit regression results for these 15 sets of Monte Carlo simulation. The observable systematic macro 

and sector-specific idiosyncratic risk factors are econometrically significant predictors of binary default occurrence. Each of 

the logit coefficients βm and βε is significantly negative (p-value<0.01). The concordance percentage indicates the extent to 

which the logit model correctly captures binary default occurrence. Table 2 shows that all the concordance percentages are 

greater than 88% across the board while the vast majority of these concordance percentages are 90%+. This evidence bolsters 

our use of the logit default probability model for bank equity capital quantification. This financial risk application is central 

to our quantitative analysis of a typical bank’s baseline and alternative equity capital needs.  

 

Figure 2 provides the stereoscopic visualization of default probability (PD), confidence level (α), and value-at-risk equity 

capital (κ). We can observe from this visualization that the value-at-risk or conditional value-at-risk capital requirement is a 

highly non-linear quasi-concave function of the default probability measure. At each confidence level, the equity capital 

ratio first increases with PD up to some threshold and then decreases with PD. This watershed appears to be between 25% 

and 40%. This non-linear trend highlights an important part of the equity capital formula: the equity capital cushion covers 

only the large financial losses above and beyond the average loss, the latter of which simply equates PD times LGD. Thus, 

the equity capital ratio first increases with PD as the marginal increase in financial risk exposure incurs large losses that in 

turn outweigh the average reserve for asset impairment. As PD increases, the likely loss severity declines up to some point 

at which the sum of additional losses equates the average loss provision. When PD rises above this watershed, the average 

loss provision more than fully offsets any marginal loss. In this latter case, the equity capital requirement decreases as the 

asset exposures exhibit much greater default likelihood in the highest PD segments.  

 

Figure 2 indicates that the conditional value-at-risk capital curve consistently embeds an overlay on top of the value-at-risk 

capital curve. Also, the former exhibits a faster speed of capital deterioration than the latter toward the right tail of the PD 

spectrum. Thus, the conditional value-at-risk equity capital requirement typically exceeds the value-at-risk equity capital 

requirement up to some PD threshold while the former declines more quickly than the latter beyond this PD threshold. In 

sum, the asset-equivalent conditional value-at-risk equity capital ratio consistently outweighs the value-at-risk counterpart. 

Our subsequent analysis demonstrates this latter point throughout Tables 3 to 8.  
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5.2 Baseline PD and capital evidence 

Figure 3 displays the point-in-time PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. Panels 

A to E present this information for the different asset correlation permutations ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, 

and ξ=50%. Within each panel, the left-hand side shows the TTC0 PD time-series and the long-term average TTC0, TTC1, 

TTC2, and TTC3 PDs. The long-term average TTC1 PD is lower than the long-term average TTC0, TTC2, and TTC3 PDs 

by an order of magnitude. For instance, the baseline set of risk parameters {ρ, φ, ξ}={15%, 50%, 50%} yields the long-run 

average TTC0, TTC2, and TTC3 PDs near 5.30%, whereas, the long-run average TTC1 PD is no greater than 4.65%. Thus, 

the TTC1 approach substantially underestimates the TTC0 PD and equity capital results that better accord with the spirit of 

the Basel TTC regulatory requirement. The right-hand side of each panel magnifies the fine neighborhood of the long-term 

average TTC0, TTC2, and TTC3 PDs. We observe from this chart that the long-run average TTC3 PD better approximates 

the long-run average TTC0 PD than the TTC2 counterpart. At any rate, the TTC2 and TTC3 PD approximations are both 

sufficiently close to the TTC0 origin. Our subsequent analysis suggests that these higher-order approximations are accurate 

enough for the equity capital differences to be reasonably minimal.   

 

Figure 4 shows the TTC0, TTC1, TTC2, and TTC3 PD histograms and Calinski-Harabasz variance ratios with quantile-bin 

(QB), equal-bin (EB), and k-means (KM) algorithmic segmentation. Panels A to E display all this quantitative information 

for different asset correlation permutations ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50%. The Calinski-Harabasz 

chart displays that KM segmentation consistently achieves the highest ratio of inter-group variance to intra-group variance 

up to at least 30 segments in comparison to the QB and EB methods. In terms of the QB, EB, and KM PD histograms, the 

latter exhibit smoother curves that are similar to their corresponding empirical kernel density charts. This smooth evidence 

arises from the computational power of KM algorithmic segmentation that allows for changes in both PD band width and 

frequency to optimize the ratio of inter-to-intra-group PD heterogeneity. In essence, KM algorithmic segmentation yields 

smoother PD histograms across the panels {TTC0, TTC1, TTC2, TTC3}={top-left, top-right, bottom-left, bottom-right}. 

 

Table 3 summarizes the TTC0, TTC1, TTC2, and TTC3 PD, value-at-risk, and conditional value-at-risk across the 30 KM 

segments. Panels A to E present this information for the different asset correlation permutations ρ={15%, 20%, 25%, 30%, 

35%}, φ=50%, and ξ=50%. Each panel comprises a pair of subsidiary tables that encapsulate the TTC0, TTC1, TTC2, and 

TTC3 results. The first subsidiary table shows that both the TTC0 value-at-risk and conditional value-at-risk equity capital 

ratios consistently exceed the TTC1 counterparts across all of the 30 PD segments. This evidence suggests that the current 

approach to integrating macroeconomic risk factors into the highly non-linear default probability function results in a large 

capital underestimation bias. Furthermore, the second subsidiary table suggests that the TTC2 and TTC3 value-at-risk and 

conditional value-at-risk equity capital ratios closely approximate the TTC0 counterparts across the vast majority of the 30 

PD segments. This latter evidence provides confidence that our Taylor-series expansion adequately accounts for the higher 
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moments of a linear combination of macroeconomic risk factors (i.e. its variance and skewness). Thus, our alternative TTC 

approximation helps fill the gap between TTC0 and TTC1 to better gauge PD, value-at-risk, and conditional value-at-risk.  

 

Table 4 shows the baseline asset-equivalent value-at-risk and conditional value-at-risk equity capital ratios for the different 

asset correlation permutations ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50%. When we vary the asset correlation 

value from 15% to 35% in increments of 5%, the TTC0 value-at-risk equity capital ratios range from 9.74% to 22.05%. In 

addition, the TTC0 conditional value-at-risk equity capital ratios range from 11.92% to 26.66% within the same baseline 

model. However, the TTC1 value-at-risk equity capital ratios grossly underestimate the TTC0 counterparts by 101 to 415 

basis points. In contrast, our alternative TTC capital approximation is closer to the TTC0 origin by an order of magnitude. 

The TTC2 and TTC3 capital underestimation bias is no more than 73 basis points (<3% of the total equity capital amount). 

From a pragmatic perspective, we prefer to recommend the introduction of econometric conservatism to the extent that the 

law of inadvertent consequences counsels caution. While most estimates of the value-at-risk equity capital ratios are in the 

intermediate range of about 13%-19%, most estimates of the conditional value-at-risk equity capital ratios are in the range 

of 15%-23%. When we conservatively increase asset correlation from 15% to 35% for a severe downturn scenario, ceteris 

paribus, the equity capital cushion can be as high as 22%-26%. These quantitative results support the recent proposal by 

Admati and Hellwig (2013), Admati (2014), Kashyap, Stein, and Hanson (2010), and Myerson (2014) to introduce a 20%+ 

equity capital requirement for banks. Our evidence lends credence to a scientific basis for the socially optimal introduction 

of substantially heightened equity capital requirements for banks in particular as well as financial institutions in general. 

This fresh strand of quantitative research can become part of our financial risk toolkit in due course. 

 

Figures 5 and 6 show the TTC0, TTC1, TTC2, and TTC3 value-at-risk and conditional value-at-risk equity capital ratios 

across the 30 KM segments. We can infer at least three empirical results from this diagrammatical representation. First, the 

equity capital ratios exhibit a concave positive relation with PD across the first 20-25 segments. Beyond the watershed, the 

equity capital ratios decline at a fast rate toward the last 5 segments. A concave hump exists across the board, and higher 

asset correlation raises the height of this hump. This phenomenon magnifies the cross-sectional variation in equity capital. 

Second, it is easy to observe that the TTC1 equity capital ratios underestimate the true TTC0 counterparts. This evidence is 

more pronounced for the special case of ρ=30%. Third, it is difficult to identify any peculiar empirical association between 

PD and asset correlation. For an invariant equity capital ratio, higher asset correlation seems to correspond to the lower PD 

segments. However, this capital-invariance assumption does not hold in a dynamic equilibrium context. The value-at-risk 

and conditional value-at-risk capital ratios gyrate in response to changes in both asset correlation and PD segmentation. In 

this more realistic dynamic view, equity capital movements adjust in accordance with changes in both asset correlation and 

portfolio composition. The empirical relation between PD and asset correlation can be positive, negative, or ambiguous. In 

fact, this empirical relation largely depends upon how equity capital requirements dynamically react to the joint changes in 

asset correlation and PD segmentation.  
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This latter discussion echoes the mathematical derivation of a sufficiently general microfoundation for the empirical nexus 

between PD and asset correlation set out in Section 2. From the viewpoint of financial regulators, the worst-case scenario 

arises from a significantly positive relation between PD and asset correlation during a severe macroeconomic recession. In 

this case, the unpropitious rise in asset correlation exacerbates a portfolio tilt toward the higher PD segments. In response, 

higher financial risk exposure manifests in the bank’s equity capital requirement. This economic thread helps explain why 

our default probability model better captures a dynamic equilibrium increase in the bank’s equity capital requirement once 

we relax the capital-invariance assumption to characterize a positive relation between PD and asset correlation. This thread 

reinforces the central thesis that banks can become more stable by holding more equity capital to counteract extreme losses 

in times of financial stress.  

 

 

 

5.3 Alternative PD and capital evidence 

Figure 7 displays the point-in-time PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. Panels 

A to E present this information for the alternative correlation permutations ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and 

ξ=50%. Within each panel, the left-hand side plots the TTC0 PD time-series and the long-run average TTC0, TTC1, TTC2, 

and TTC3 PDs. The long-term average TTC1 PD is lower than the long-term average TTC0, TTC2, and TTC3 PDs by an 

order of magnitude. For instance, the baseline set of risk parameters {ρ, φ, ξ}={15%, 50%, 50%} yields the long-run mean 

TTC0, TTC2, and TTC3 PDs near 5.30%, whereas, the long-run average TTC1 PD is lower than 4.65%. Hence, the TTC1 

approach substantially underestimates the TTC0 PD and equity capital results that better accord with the spirit of the Basel 

TTC regulatory requirement. The right-hand side of each panel magnifies the fine neighborhood of the long-term average 

TTC0, TTC2, and TTC3 PDs. We can observe from this informative chart that the long-term average TTC3 PD sometimes 

slightly overestimates the long-term average TTC0 PD while the long-term average TTC2 PD underestimates the long-run 

average TTC0 PD. Moreover, the long-run average TTC3 PD better approximates the long-run average TTC0 PD than the 

TTC2 counterpart. At any rate, the TTC2 and TTC3 PD approximations are both sufficiently close to the TTC0 origin. Our 

subsequent analysis suggests that these higher-order approximations are accurate enough for the equity capital differences 

to be reasonably minimal.   

 

Figure 8 shows the TTC0, TTC1, TTC2, and TTC3 PD histograms and Calinski-Harabasz variance ratios with quantile-bin 

(QB), equal-bin (EB), and k-means (KM) algorithmic segmentation. Panels A to E display all this quantitative information 

for alternative correlation permutations ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50%. The Calinski-Harabasz plot 

displays that KM segmentation consistently achieves the highest ratio of inter-group variance to intra-group variance up to 

at least 30 segments in comparison to the QB and EB methods. In terms of the QB, EB, and KM PD histograms, the latter 

exhibit smoother curves that are similar to their corresponding empirical kernel density charts. This smooth evidence arises 
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from the computational power of KM segmentation that permits changes in both PD band width and frequency to optimize 

the ratio of inter-to-intra-group PD heterogeneity. In brief, KM algorithmic segmentation yields smoother PD histograms 

across the panels {TTC0, TTC1, TTC2, TTC3}={top-left, top-right, bottom-left, bottom-right}. 

 

Table 5 summarizes the TTC0, TTC1, TTC2, and TTC3 PD, value-at-risk, and conditional value-at-risk across the 30 KM 

segments. Panels A to E present this information for the alternative correlation permutations ρ=15%, φ={40%, 45%, 50%, 

55%, 60%}, and ξ=50%. Each panel comprises a pair of subsidiary tables that encapsulate the TTC0, TTC1, TTC2, and 

TTC3 results. The first subsidiary table shows that both the TTC0 value-at-risk and conditional value-at-risk equity capital 

ratios consistently exceed the TTC1 counterparts across all of the 30 PD segments. This evidence suggests that the current 

approach to integrating macroeconomic risk factors into the highly non-linear default probability function results in a large 

capital underestimation bias. Furthermore, the second subsidiary table suggests that the TTC2 and TTC3 value-at-risk and 

conditional value-at-risk equity capital ratios closely approximate the TTC0 counterparts across the vast majority of the 30 

PD segments. This latter evidence provides confidence that our Taylor-series expansion adequately accounts for the higher 

moments of a linear combination of macroeconomic factors (i.e. its variance and skewness). Thereby, our alternative TTC 

approximation helps fill the gap between TTC0 and TTC1 to better gauge PD, value-at-risk, and conditional value-at-risk.  

 

Table 6 summarizes the asset-equivalent value-at-risk and conditional value-at-risk equity capital ratios for the alternative 

correlation permutations ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50%. When we vary the systematic risk macro 

correlation value from 40% to 60% in increments of 5%, the TTC0 value-at-risk equity capital ratios hover around 9.72%- 

9.77%. In addition, the TTC0 conditional value-at-risk equity capital ratios hover around 11.90%-11.92%. Thus, the TTC0 

equity capital requirements appear insensitive to whether the observable and unobservable components of the systematic 

risk factor highly correlate with each other.  

 

The TTC1 value-at-risk equity capital ratios underestimate the TTC0 counterparts by 80 to 134 basis points. In comparison, 

our alternative TTC capital approximation is closer to the TTC0 origin by a full order of magnitude. The TTC2 and TTC3 

capital underestimation bias is no more than 12 basis points (<1% of the total equity capital amount). Our alternative TTC 

approximation performs well relative to the TTC0 origin.  

 

Figures 9 and 10 show the TTC0, TTC1, TTC2, and TTC3 value-at-risk and conditional value-at-risk equity capital ratios 

across the 30 KM segments. We can observe from these charts that the equity capital curves almost overlap although these 

curves reflect different correlation permutations ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50%. This evidence is no 

surprise because our logit default probability model is reasonably accurate with 90%+ concordance percentages. Insofar as 

this model predicts binary default occurrence correctly most of the time, whether the observable systematic macro factor 
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significantly correlates with the unobservable counterpart does not matter. In summary, the value-at-risk and conditional 

value-at-risk equity capital ratios do not vary much in response to this alternative set of correlation permutations.  

 

 

Figure 11 displays the point-in-time PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. Panels 

A to E present this information for the alternative correlation permutations ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 

60%}. Within each panel, the left-hand side plots the TTC0 PD time-series and the long-term average TTC0, TTC1, TTC2, 

and TTC3 PDs. The long-term average TTC1 PD is lower than the long-term average TTC0, TTC2, and TTC3 PDs by an 

order of magnitude. For instance, the baseline set of risk parameters {ρ, φ, ξ}={15%, 50%, 50%} yields the long-run mean 

TTC0, TTC2, and TTC3 PDs near 5.30%, whereas, the long-run average TTC1 PD is lower than 4.65%. Hence, the TTC1 

approach substantially underestimates the TTC0 PD and equity capital results that better accord with the spirit of the Basel 

TTC regulatory requirement. The right-hand side of each panel magnifies the fine neighborhood of the long-term average 

TTC0, TTC2, and TTC3 PDs. We can observe from this informative chart that the long-term average TTC3 PD sometimes 

slightly overestimates the long-term average TTC0 PD while the long-term average TTC2 PD underestimates the long-run 

average TTC0 PD. Moreover, the long-run average TTC3 PD better approximates the long-run average TTC0 PD than the 

TTC2 counterpart. At any rate, the TTC2 and TTC3 PD approximations are both sufficiently close to the TTC0 origin. Our 

subsequent analysis suggests that these higher-order approximations are accurate enough for the equity capital differences 

to be reasonably minimal.   

 

Figure 12 shows the TTC0, TTC1, TTC2, and TTC3 PD histograms and Calinski-Harabasz variance ratios with equal-bin 

(EB), quantile-bin (QB), and k-means (KM) algorithmic segmentation. Panels A to E present this quantitative information 

for alternative correlation permutations ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%}. The Calinski-Harabasz plot 

displays that KM segmentation consistently achieves the highest ratio of inter-group variance to intra-group variance up to 

at least 30 segments in comparison to the QB and EB methods. In terms of the QB, EB, and KM PD histograms, the latter 

exhibit smoother curves that are similar to their corresponding empirical kernel density charts. This smooth evidence arises 

from the computational power of KM segmentation that permits changes in both PD band width and frequency to optimize 

the ratio of inter-to-intra-group PD heterogeneity. In brief, KM algorithmic segmentation yields smoother PD histograms 

across the panels {TTC0, TTC1, TTC2, TTC3}={top-left, top-right, bottom-left, bottom-right}. 

 

Table 7 summarizes the TTC0, TTC1, TTC2, and TTC3 PD, value-at-risk, and conditional value-at-risk across the 30 KM 

segments. Panels A to E present this information for the alternative correlation permutations ρ=15%, φ=50%, and ξ={40%, 

45%, 50%, 55%, 60%}. Each panel comprises a pair of subsidiary tables that contain the TTC0, TTC1, TTC2, and TTC3 

results. The first subsidiary table shows that both the TTC0 value-at-risk and conditional value-at-risk equity capital ratios 

consistently exceed the TTC1 counterparts across all the 30 PD segments. This evidence suggests that the current approach 
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to integrating macroeconomic risk factors into the highly non-linear default probability function results in a serious capital 

underestimation bias. Moreover, the second subsidiary table reflects that the TTC2 and TTC3 value-at-risk and conditional 

value-at-risk equity capital ratios closely approximate the TTC0 counterparts across the vast majority of the 30 segments. 

This latter evidence provides confidence that our Taylor-series expansion adequately accounts for the higher moments of a 

linear combination of macro risk factors (i.e. its variance and skewness). Hence, our alternative TTC approximation helps 

close the wedge between TTC0 and TTC1 to better estimate PD, value-at-risk, and conditional value-at-risk.  

 

Table 8 summarizes the asset-equivalent value-at-risk and conditional value-at-risk equity capital ratios for the alternative 

correlation permutations ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%}. When the idiosyncratic risk correlation 

value increases from 40% to 60% in increments of 5%, the TTC0 value-at-risk equity capital ratio declines from 10.78% to 

8.68% while the TTC0 conditional value-at-risk equity capital ratio decreases from 13.08% to 10.61%. Further, the TTC1 

equity capital ratios underestimate the TTC0 counterparts by 100 to 122 basis points. In comparison, our alternative TTC 

capital approximation is closer to the TTC0 origin by an order of magnitude. The TTC2 and TTC3 capital underestimation 

bias is no more than 11 basis points (<1% of the total equity capital amount). Our alternative TTC approximation performs 

well relative to the TTC0 origin.  

 

Figures 13 and 14 show the TTC0, TTC1, TTC2, and TTC3 value-at-risk and conditional value-at-risk equity capital ratios 

across the 30 KM segments. When the idiosyncratic risk correlation value increases from 40% to 60% in increments of 5%, 

we observe a fair bit of credit migration from the high PD segments to the low PD segments. This increase in idiosyncratic 

risk correlation suggests that the econometrician faces less uncertainty around the idiosyncratic risk factor. As a result, this 

reduction in idiosyncratic uncertainty represents lower model risk. A plausible economic interpretation indicates that this 

lower model risk translates into a tangible benefit in the form of equity capital relief. In essence, the bank requires a lower 

equity capital cushion when the logit default probability model more accurately captures idiosyncratic risk through higher 

correlation between the observable and unobservable components of the idiosyncratic risk factor.  

 

 

 

6. Conclusion 

We have developed an analytical solution for the default probability adjustment through the macroeconomic cycle. This 

adjustment corrects for the capital underestimation bias due to the highly non-linear nature of the default probability model. 

Our results bolster the case for a non-trivial bank capital overlay on the Basel minimum equity capital requirement that one 

calculates from the use of long-term average macroeconomic risk factors. This major contribution adds to the literature on 

bank capital management by advocating support for more robust total capital adequacy. Our conclusion is thus consistent 
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with the recent proposal for banks to hold more equity capital (Admati, DeMarzo, Hellwig, and Pfleiderer, 2011; Admati 

and Hellwig, 2013; Kashyap, Stein, and Hanson, 2010; Myerson, 2014). Banks should have a structural shift in the mix of 

debt and equity in the total asset base, and the resultant move toward a greater use of equity capital helps lower the bank’s 

leverage ratio. Hence our study provides a scientific basis for the central thesis that banks become more stable by holding a 

greater equity capital cushion to absorb severe losses in times of financial stress.  

 

Our results substantiate the case for revisiting the newly proposed 3%-6% equity capital requirement under the Basel bank 

capital regime. In contrast to this rather lenient regulatory equity capital requirement, our empirical results suggest that the 

typical bank’s equity capital ratio should be as high as 22%-26%. This range is consistent with the qualitative implications 

of the recent proposal for banks to substantially increase their equity capital ratios that would become more commensurate 

with financial risk exposure that these banks might face in a severe recession (e.g. Admati and Hellwig (2013); Kashyap, 

Stein, and Hanson (2010); Myerson (2014)). Also, our analysis can be extended to help design a macroeconometric stress 

test for bank equity capital management. Overall, our work advocates support for more robust total equity capital adequacy. 

This endeavor serves as a scientific microfoundation for the central thesis that banks can become more stable by holding a 

greater equity capital buffer to absorb large losses in times of severe financial stress. 

 

Overall, our analysis poses an important challenge to the central prediction of DeAngelo and Stulz’s (2015) baseline model 

of high bank leverage. Through the lens of financial risk management, the typical bank should substantially raise its equity 

capital cushion to counteract severe losses in times of extreme financial stress. From this normative perspective, high bank 

leverage cannot be socially optimal because the typical bank runs the risk of not being able to absorb large financial losses 

in a rare macroeconomic downturn such as the recent Global Financial Crisis. In contrast to DeAngelo and Stulz’s (2015) 

emphasis on the important role that most banks play in producing aggregate liquid claims, our current study points out that 

the typical bank’s high leverage ratio suggests an insufficient equity capital buffer for extreme loss absorption in a rare but 

plausible economic recession. Our empirical analysis corroborates the recent proposal for most banks to substantially raise 

their equity capital positions due to precautionary concerns (Admati, DeMarzo, Hellwig, and Pfleiderer, 2011; Admati and 

Hellwig, 2013; Kashyap, Stein, and Hanson, 2010; Myerson, 2014). 

 

Our research sheds light on the quantitative design of the countercyclical capital buffer. The countercyclical capital buffer 

can be set to be commensurate with the higher-order Taylor series in the default probability adjustment. To the extent that 

macroeconomic fluctuations exert a first-order impact on the non-linear default probability adjustment, the countercyclical 

capital buffer that the bank’s capital management committee would demand can manifest in the higher-order derivatives in 

the default probability function. We await future policy research to assess whether this countercyclical capital buffer fits 

better in the Pillar 1 minimum capital requirement or the Pillar 2 supervisory review under the Basel bank capital regime. 
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The evidence also points to the pragmatic use of asymmetric tweaks such as the maximum loan-to-value or debt-to-income 

ratios for dampening the financial market bubble through the credit channel of monetary transmission. To the extent that the 

loan-to-value or debt-to-income ratio serves as a pivotal default risk driver, setting a cap on the total mortgage quantum, for 

instance, helps curtail the housing price bubble that tends to precede a subsequent economic downturn. This alternative 

macroprudential policy instrument can thus help mute the borrower’s asymmetric response to macroeconomic fluctuations 

in an upturn. In addition to the design of the countercyclical equity capital buffer, this alternative macroprudential policy 

instrument helps an expansionary economy cast an anchor windward to better prepare for the next recession. 

 

Future research can extend our Monte Carlo simulation of the asymptotic single risk factor model to analyze the extent to 

which the pervasive macroeconomic, systematic, and idiosyncratic risk factors affect the time-series variation in the capital 

shortfall that is due to procyclicality risk. This research helps us better develop the theoretical basis of macroeconometric 

stress tests. In turn, this development connects the procyclical capital shortfall to the bank’s internal risk management for 

total capital adequacy. 
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Table 1: Parameter values for the Monte Carlo simulation  

This table summarizes the major parameters for the Monte Carlo simulation of empirical default probabilities for a synthetic portfolio of 

10,000 risky asset exposures over 1,000 annual cohorts. For each of these annual cohorts, the synthetic empirical default probability is the 

number of default events divided by the total number of risky asset exposures. Replicating this simulation for 1,000 annual cohorts is 

equivalent to simulating the empirical default likelihood for a given risky asset exposure over 1,000 years in accordance with the Basel 

capital framework that focuses on the one-in-a-thousand-year rare stress event. We use a simple and intuitive logit regression model to 

estimate default likelihood for the individual risky asset exposures with the inclusion of the observable systematic and idiosyncratic risk 

factors (both of which arise from the initial Monte Carlo simulation). In order to arrive at the consistent quantitative evidence, we set the 

random seed at exp(π). We employ the k-means clustering algorithm from 5 segments to 100 segments in increments of a single segment. 

This algorithmic segmentation helps gauge the central tendency of default probabilities within each segment. These default probabilities 

serve as key inputs in the computation of value-at-risk and conditional value-at-risk capital requirements across the optimally chosen 30 

k-means segments. With the baseline and alternative numerical values for asset correlation, systematic risk correlation, and idiosyncratic 

risk correlation, we can carry out sensitivity analysis to examine the extent to which both the value-at-risk and conditional value-at-risk 

capital requirements vary in response to marginal changes in these major parameters.  

 

 

 

 

 

 

  

Major parameter for Monte Carlo simulation of value-at-risk capital Numerical value or range of each parameter for Monte Carlo analysis 

Random seed exp(π)

Asset correlation ρ {15%, 20%, 25%, 30%, 35%}

Systematic risk factor m m~N (0,1)

Systematic correlation φ {40%, 45%, 50%, 55%, 60%}

Observable systematic risk factor mo mo~N (0,1)

Unobservable systematic risk factor mu mu~N (0,1)

Idiosyncratic risk factor ε ε ~N (0,1)

Idiosyncratic correlation ξ {40%, 45%, 50%, 55%, 60%}

Observable idiosyncratic risk factor εo εo~N (0,1)

Unobservable idiosyncratic risk factor εu εu~N (0,1)

Number of asset exposures 10,000

Number of annual cohorts 1,000

Minimum number of segments 5

Maximum number of segments 100

Number of iterations for k-means segmentation 100
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Table 2: Logit regression summary with different parameter values 

This table encapsulates the logit regression results for the baseline and alternative versions of the quasi-maximum likelihood estimation 

of default probabilities for the risky asset exposures. In total, there are 5 sets of baseline logit regressions for 5 different asset correlation 

values from 15% to 35% in increments of 5%, as well as 10 sets of alternative logit regressions for 5 different systematic risk correlation 

values from 40% to 60% in increments of 5% and 5 different idiosyncratic risk correlation values from 40% to 60% in increments of 5%. 

In each logit regression, we first separately include only one of the observable systematic and idiosyncratic risk factors and then include 

both factors as explanatory variables. Each set of logit regression results reports the logit coefficients, their respective standard errors, the 

McFadden pseudo-R2s and the concordance percentages. The logit model allows us to compute each TTC0 default probability as the long-

run average measure of the point-in-time default probabilities for each of the 10,000 synthetic risky assets. Then we compare this TTC0 

default probability to the TTC1 default probability that takes into account a linear combination of the long-term average macro risk 

covariates. We gauge the TTC2 and TTC3 default probabilities via the higher-order Taylor-series expansion of the non-linear logit default 

likelihood function. These default probabilities serve as inputs in the subsequent computation of equity capital ratios. 

 

 

  

Baseline logit model ρ ={15%,20%,25%,30%,35%} Alternative #1 model φ={40%,45%,50%,55%,60%}Alternative #2 model ξ ={40%,45%,50%,55%,60%}

Parameter permutation (1) (2) (3) Parameter permutation (1) (2) (3) Parameter permutation (1) (2) (3)

ρ=15%, φ =50%, ξ =50% ρ=15%, φ =40%, ξ =50% ρ=15%, φ =50%, ξ =40%

β o -3.013 -4.136 -4.426 β o -2.982 -4.130 -4.356 β o -3.019 -3.834 -4.068

stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003

βm -0.579 -0.760 βm -0.517 -0.673 βm -0.583 -0.710

stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002

β ε -1.830 -1.949 β ε -1.828 -1.921 β ε -1.555 -1.638

stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002

McFadden pseudo-R
2 4.1% 28.8% 34.0% McFadden pseudo-R

2 3.3% 28.7% 32.9% McFadden pseudo-R
2 4.1% 22.9% 27.9%

Concordance percentage 65.7% 88.2% 90.8% Concordance percentage 63.7% 88.1% 90.3% Concordance percentage 65.8% 85.0% 88.1%

ρ=20%, φ =50%, ξ =50% ρ=15%, φ =45%, ξ =50% ρ=20%, φ =50%, ξ =45%

β o -3.069 -4.034 -4.414 β o -2.997 -4.132 -4.391 β o -3.016 -3.975 -4.235

stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003

βm -0.677 -0.878 βm -0.549 -0.718 βm -0.581 -0.734

stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002

β ε -1.736 -1.883 β ε -1.829 -1.935 β ε -1.688 -1.787

stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002

McFadden pseudo-R
2 5.5% 26.8% 33.8% McFadden pseudo-R

2 3.7% 28.8% 33.5% McFadden pseudo-R
2 4.1% 25.8% 30.9%

Concordance percentage 67.7% 87.1% 90.7% Concordance percentage 64.4% 88.2% 90.6% Concordance percentage 65.7% 86.6% 89.4%

ρ=25%, φ =50%, ξ =50% ρ=15%, φ =50%, ξ =50% ρ=25%, φ =50%, ξ =50%

β o -3.128 -3.939 -4.403 β o -3.013 -4.136 -4.426 β o -3.013 -4.136 -4.426

stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003

βm -0.766 -0.982 βm -0.579 -0.760 βm -0.579 -0.760

stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002

β ε -1.645 -1.816 β ε -1.830 -1.949 β ε -1.830 -1.949

stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002

McFadden pseudo-R
2 7.0% 24.9% 33.5% McFadden pseudo-R

2 4.1% 28.8% 34.0% McFadden pseudo-R
2 4.1% 28.8% 34.0%

Concordance percentage 70.5% 86.1% 90.6% Concordance percentage 65.7% 88.2% 90.8% Concordance percentage 65.7% 88.2% 90.8%

ρ=30%, φ =50%, ξ =50% ρ=15%, φ =55%, ξ =50% ρ=30%, φ =50%, ξ =55%

β o -3.187 -3.847 -4.390 β o -3.028 -4.137 -4.462 β o -3.011 -4.305 -4.632

stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.004

βm -0.849 -1.075 βm -0.609 -0.802 βm -0.578 -0.790

stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002

β ε -1.556 -1.746 β ε -1.830 -1.962 β ε -1.974 -2.116

stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002

McFadden pseudo-R
2 8.5% 22.9% 33.3% McFadden pseudo-R

2 4.5% 28.8% 34.6% McFadden pseudo-R
2 4.1% 31.7% 37.1%

Concordance percentage 72.3% 85.0% 90.5% Concordance percentage 66.3% 88.1% 91.0% Concordance percentage 65.4% 89.6% 92.0%

ρ=35%, φ =50%, ξ =50% ρ=15%, φ =60%, ξ =50% ρ=35%, φ =50%, ξ =60%

β o -3.247 -3.762 -4.379 β o -3.044 -4.137 -4.495 β o -3.011 -4.497 -4.870

stderr(β o) 0.002 0.002 0.003 stderr(β o) 0.002 0.003 0.003 stderr(β o) 0.002 0.003 0.004

βm -0.928 -1.160 βm -0.636 -0.843 βm -0.577 -0.824

stderr(βm) 0.002 0.002 stderr(βm) 0.001 0.002 stderr(βm) 0.001 0.002

β ε -1.471 -1.677 β ε -1.829 -1.974 β ε -2.129 -2.298

stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.002 stderr(β ε) 0.002 0.003

McFadden pseudo-R
2 10.0% 21.1% 33.1% McFadden pseudo-R

2 4.9% 28.8% 35.1% McFadden pseudo-R
2 4.0% 34.7% 40.3%

Concordance percentage 74.0% 83.8% 90.4% Concordance percentage 67.1% 88.1% 91.2% Concordance percentage 65.7% 90.9% 93.1%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel A-(i): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1675 0.00% 0.11% 0.24% 1.18% 2.68% 1786 0.00% 0.09% 0.19% 0.99% 2.30%
2 1174 0.24% 0.36% 0.50% 2.81% 4.50% 1206 0.19% 0.29% 0.41% 2.41% 3.92%
3 931 0.50% 0.65% 0.81% 4.25% 6.13% 997 0.41% 0.53% 0.68% 3.69% 5.50%
4 677 0.81% 0.97% 1.14% 5.57% 7.62% 804 0.68% 0.83% 1.02% 5.04% 7.11%
5 555 1.14% 1.31% 1.50% 6.80% 9.01% 685 1.02% 1.20% 1.43% 6.44% 8.75%
6 487 1.50% 1.69% 1.91% 7.99% 10.40% 582 1.43% 1.65% 1.90% 7.89% 10.38%
7 457 1.91% 2.13% 2.37% 9.23% 11.77% 481 1.91% 2.15% 2.44% 9.29% 11.96%
8 389 2.37% 2.61% 2.88% 10.43% 13.09% 434 2.44% 2.73% 3.03% 10.71% 13.46%
9 347 2.88% 3.15% 3.45% 11.63% 14.42% 335 3.03% 3.33% 3.65% 11.99% 14.86%
10 371 3.45% 3.75% 4.09% 12.83% 15.74% 261 3.65% 3.98% 4.31% 13.26% 16.15%
11 289 4.10% 4.45% 4.83% 14.07% 17.09% 257 4.31% 4.63% 4.99% 14.38% 17.36%
12 262 4.84% 5.23% 5.62% 15.31% 18.35% 221 5.00% 5.36% 5.77% 15.50% 18.57%
13 256 5.63% 6.03% 6.48% 16.45% 19.56% 203 5.77% 6.19% 6.63% 16.66% 19.76%
14 217 6.48% 6.93% 7.45% 17.59% 20.76% 174 6.64% 7.09% 7.60% 17.78% 20.93%
15 224 7.46% 7.99% 8.62% 18.77% 22.02% 160 7.62% 8.11% 8.71% 18.90% 22.11%
16 198 8.63% 9.26% 10.00% 20.01% 23.28% 188 8.73% 9.33% 10.00% 20.07% 23.28%
17 199 10.03% 10.76% 11.54% 21.24% 24.44% 145 10.01% 10.68% 11.42% 21.18% 24.35%
18 180 11.56% 12.34% 13.24% 22.34% 25.49% 160 11.47% 12.21% 13.14% 22.26% 25.44%
19 163 13.25% 14.14% 15.12% 23.38% 26.42% 115 13.22% 14.10% 15.06% 23.36% 26.39%
20 129 15.13% 16.12% 17.21% 24.29% 27.21% 127 15.14% 16.05% 17.18% 24.27% 27.20%
21 140 17.31% 18.38% 19.59% 25.11% 27.86% 95 17.26% 18.42% 19.81% 25.12% 27.91%
22 96 19.65% 20.89% 22.29% 25.76% 28.32% 109 19.92% 21.39% 23.00% 25.87% 28.40%
23 113 22.40% 23.90% 25.56% 26.27% 28.57% 80 23.03% 24.64% 26.66% 26.35% 28.59%
24 90 25.69% 27.40% 29.53% 26.53% 28.50% 79 26.76% 28.77% 30.81% 26.55% 28.40%
25 94 29.72% 31.94% 34.24% 26.44% 27.98% 84 30.93% 33.05% 35.75% 26.36% 27.73%
26 83 34.29% 36.59% 39.84% 25.96% 26.89% 60 36.27% 38.82% 41.85% 25.60% 26.40%
27 75 40.03% 43.37% 47.99% 24.67% 24.60% 52 42.13% 45.22% 50.07% 24.22% 23.91%
28 74 48.75% 53.99% 60.54% 21.60% 19.91% 65 50.29% 55.27% 61.88% 21.17% 19.34%
29 38 61.35% 67.89% 75.11% 16.21% 13.24% 38 62.78% 69.90% 77.56% 15.33% 12.02%
30 17 76.42% 84.58% 94.51% 8.30% 3.07% 17 78.89% 86.73% 95.68% 7.19% 2.42%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel A-(ii): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1785 0.00% 0.12% 0.25% 1.21% 2.75% 1785 0.00% 0.12% 0.25% 1.21% 1.61%
2 1202 0.25% 0.38% 0.53% 2.89% 4.64% 1202 0.25% 0.38% 0.53% 2.90% 3.70%
3 978 0.53% 0.68% 0.86% 4.38% 6.39% 978 0.53% 0.68% 0.86% 4.39% 5.49%
4 757 0.86% 1.05% 1.25% 5.87% 8.09% 757 0.87% 1.05% 1.26% 5.88% 7.25%
5 603 1.26% 1.46% 1.69% 7.30% 9.67% 603 1.26% 1.47% 1.69% 7.31% 8.90%
6 480 1.69% 1.91% 2.16% 8.64% 11.15% 480 1.69% 1.92% 2.16% 8.65% 10.42%
7 452 2.16% 2.40% 2.68% 9.93% 12.59% 452 2.16% 2.41% 2.69% 9.94% 11.88%
8 372 2.68% 2.96% 3.27% 11.21% 14.02% 372 2.69% 2.96% 3.28% 11.23% 13.30%
9 395 3.28% 3.59% 3.93% 12.52% 15.44% 395 3.28% 3.60% 3.94% 12.54% 14.74%
10 299 3.94% 4.28% 4.65% 13.79% 16.78% 299 3.95% 4.29% 4.66% 13.81% 16.12%
11 251 4.66% 5.05% 5.42% 15.04% 18.05% 251 4.68% 5.06% 5.44% 15.06% 17.47%
12 254 5.43% 5.82% 6.25% 16.17% 19.25% 254 5.45% 5.83% 6.26% 16.18% 18.66%
13 221 6.26% 6.69% 7.19% 17.30% 20.45% 221 6.27% 6.70% 7.20% 17.31% 19.86%
14 203 7.19% 7.69% 8.22% 18.45% 21.61% 203 7.21% 7.70% 8.23% 18.46% 21.05%
15 174 8.23% 8.76% 9.35% 19.54% 22.71% 174 8.25% 8.78% 9.37% 19.56% 22.17%
16 160 9.38% 9.95% 10.65% 20.60% 23.79% 159 9.39% 9.97% 10.65% 20.61% 23.24%
17 184 10.67% 11.35% 12.09% 21.67% 24.81% 184 10.66% 11.35% 12.10% 21.68% 24.31%
18 145 12.10% 12.85% 13.68% 22.65% 25.73% 146 12.11% 12.86% 13.69% 22.66% 25.27%
19 156 13.70% 14.53% 15.49% 23.57% 26.58% 156 13.72% 14.54% 15.51% 23.58% 26.16%
20 111 15.51% 16.48% 17.55% 24.44% 27.32% 111 15.52% 16.49% 17.56% 24.45% 26.97%
21 138 17.59% 18.64% 19.87% 25.19% 27.92% 138 17.60% 18.65% 19.88% 25.19% 27.63%
22 96 19.93% 21.20% 22.64% 25.83% 28.37% 96 19.94% 21.20% 22.64% 25.83% 28.17%
23 113 22.75% 24.28% 25.97% 26.31% 28.58% 113 22.75% 24.28% 25.97% 26.31% 28.51%
24 90 26.11% 27.83% 29.98% 26.54% 28.47% 90 26.10% 27.83% 29.96% 26.54% 28.57%
25 94 30.18% 32.39% 34.68% 26.41% 27.91% 94 30.16% 32.37% 34.65% 26.41% 28.23%
26 83 34.73% 37.00% 40.19% 25.90% 26.81% 83 34.70% 36.96% 40.15% 25.90% 27.51%
27 75 40.37% 43.62% 48.09% 24.61% 24.57% 75 40.33% 43.58% 48.04% 24.62% 25.93%
28 74 48.82% 53.88% 60.23% 21.64% 20.03% 74 48.77% 53.84% 60.19% 21.66% 22.56%
29 39 61.02% 67.71% 76.06% 16.28% 12.77% 39 60.99% 67.69% 76.06% 16.29% 16.76%
30 16 77.04% 84.94% 94.57% 8.11% 3.04% 16 77.04% 84.95% 94.58% 8.11% 8.23%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel B-(i): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1448 0.00% 0.12% 0.23% 1.73% 3.83% 1745 0.00% 0.10% 0.20% 1.49% 3.41%
2 1096 0.23% 0.35% 0.49% 3.86% 6.21% 1205 0.20% 0.30% 0.42% 3.43% 5.62%
3 878 0.49% 0.63% 0.77% 5.69% 8.23% 1009 0.42% 0.54% 0.68% 5.14% 7.64%
4 698 0.77% 0.92% 1.09% 7.29% 10.11% 763 0.68% 0.83% 0.99% 6.82% 9.56%
5 625 1.08% 1.26% 1.46% 8.89% 11.95% 620 0.99% 1.15% 1.33% 8.42% 11.36%
6 538 1.46% 1.66% 1.87% 10.50% 13.72% 505 1.33% 1.51% 1.71% 9.94% 13.04%
7 459 1.88% 2.09% 2.33% 12.03% 15.39% 455 1.71% 1.90% 2.12% 11.38% 14.65%
8 420 2.33% 2.57% 2.83% 13.51% 16.97% 383 2.12% 2.34% 2.59% 12.82% 16.23%
9 367 2.83% 3.09% 3.37% 14.91% 18.47% 391 2.59% 2.83% 3.11% 14.24% 17.78%
10 327 3.38% 3.66% 3.93% 16.30% 19.84% 310 3.12% 3.40% 3.73% 15.69% 19.37%
11 284 3.93% 4.20% 4.49% 17.47% 21.07% 301 3.74% 4.07% 4.42% 17.20% 20.90%
12 234 4.50% 4.80% 5.14% 18.63% 22.30% 262 4.42% 4.77% 5.18% 18.58% 22.37%
13 246 5.15% 5.49% 5.87% 19.84% 23.54% 243 5.18% 5.59% 6.06% 19.99% 23.84%
14 249 5.88% 6.25% 6.67% 21.01% 24.74% 209 6.07% 6.53% 7.04% 21.42% 25.24%
15 210 6.68% 7.10% 7.61% 22.19% 25.95% 181 7.07% 7.58% 8.17% 22.78% 26.59%
16 227 7.61% 8.12% 8.72% 23.40% 27.17% 190 8.19% 8.77% 9.39% 24.10% 27.81%
17 202 8.74% 9.36% 10.06% 24.68% 28.39% 147 9.40% 10.01% 10.69% 25.27% 28.89%
18 200 10.08% 10.80% 11.55% 25.92% 29.49% 160 10.74% 11.42% 12.27% 26.38% 29.94%
19 180 11.56% 12.30% 13.14% 26.98% 30.42% 115 12.34% 13.14% 14.01% 27.49% 30.84%
20 165 13.15% 14.00% 14.92% 27.95% 31.22% 127 14.09% 14.91% 15.94% 28.38% 31.58%
21 129 14.93% 15.86% 16.96% 28.78% 31.87% 95 16.01% 17.07% 18.34% 29.20% 32.18%
22 159 17.00% 18.12% 19.63% 29.52% 32.39% 109 18.44% 19.77% 21.24% 29.90% 32.56%
23 125 19.68% 21.18% 22.93% 30.13% 32.63% 80 21.27% 22.74% 24.59% 30.31% 32.60%
24 131 22.97% 24.71% 27.05% 30.41% 32.43% 79 24.68% 26.52% 28.41% 30.41% 32.26%
25 100 27.11% 29.48% 31.68% 30.22% 31.71% 84 28.51% 30.47% 32.97% 30.12% 31.43%
26 96 31.88% 34.09% 37.26% 29.57% 30.33% 62 33.46% 35.94% 39.11% 29.19% 29.78%
27 78 37.45% 40.69% 45.07% 28.01% 27.72% 54 39.17% 42.34% 46.98% 27.53% 26.99%
28 74 45.78% 50.69% 56.88% 24.67% 22.78% 62 47.24% 51.98% 58.96% 24.17% 21.81%
29 39 57.65% 64.26% 72.57% 18.86% 15.05% 37 59.37% 66.41% 74.18% 17.84% 14.21%
30 16 73.56% 81.92% 92.65% 9.98% 4.15% 17 75.60% 84.27% 94.53% 8.72% 3.09%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel B-(ii): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1654 0.00% 0.13% 0.26% 1.83% 4.08% 1654 0.00% 0.13% 0.26% 1.83% 4.10%
2 1183 0.26% 0.39% 0.54% 4.13% 6.62% 1183 0.26% 0.39% 0.54% 4.14% 6.64%
3 925 0.54% 0.69% 0.85% 6.07% 8.77% 925 0.54% 0.70% 0.86% 6.09% 8.79%
4 672 0.86% 1.02% 1.19% 7.78% 10.65% 672 0.86% 1.02% 1.19% 7.80% 10.68%
5 552 1.19% 1.36% 1.55% 9.34% 12.37% 552 1.20% 1.37% 1.56% 9.36% 12.40%
6 479 1.55% 1.74% 1.95% 10.80% 14.03% 479 1.56% 1.75% 1.96% 10.83% 14.05%
7 430 1.95% 2.17% 2.40% 12.27% 15.61% 430 1.96% 2.18% 2.41% 12.30% 15.64%
8 400 2.40% 2.63% 2.89% 13.68% 17.15% 400 2.41% 2.64% 2.90% 13.71% 17.18%
9 343 2.89% 3.16% 3.46% 15.09% 18.71% 343 2.91% 3.17% 3.47% 15.11% 18.74%
10 387 3.46% 3.77% 4.11% 16.54% 20.25% 387 3.48% 3.78% 4.13% 16.57% 20.28%
11 298 4.11% 4.46% 4.83% 17.98% 21.72% 298 4.13% 4.47% 4.84% 18.01% 21.75%
12 251 4.84% 5.22% 5.60% 19.38% 23.10% 251 4.86% 5.24% 5.61% 19.41% 23.13%
13 254 5.61% 5.99% 6.41% 20.62% 24.37% 254 5.62% 6.01% 6.43% 20.65% 24.40%
14 220 6.42% 6.84% 7.33% 21.85% 25.61% 220 6.44% 6.86% 7.35% 21.87% 25.63%
15 204 7.33% 7.82% 8.34% 23.06% 26.78% 204 7.35% 7.84% 8.36% 23.09% 26.80%
16 174 8.36% 8.87% 9.45% 24.20% 27.86% 174 8.38% 8.90% 9.47% 24.23% 27.88%
17 160 9.47% 10.03% 10.70% 25.28% 28.89% 160 9.49% 10.05% 10.72% 25.31% 28.91%
18 186 10.73% 11.38% 12.11% 26.35% 29.84% 186 10.75% 11.41% 12.13% 26.37% 29.86%
19 147 12.12% 12.85% 13.65% 27.31% 30.67% 147 12.14% 12.87% 13.67% 27.33% 30.68%
20 160 13.70% 14.48% 15.46% 28.19% 31.42% 160 13.72% 14.51% 15.49% 28.20% 31.42%
21 123 15.54% 16.52% 17.58% 29.02% 32.02% 123 15.56% 16.54% 17.60% 29.03% 32.03%
22 144 17.62% 18.71% 20.22% 29.67% 32.47% 144 17.64% 18.73% 20.23% 29.67% 32.47%
23 120 20.25% 21.77% 23.52% 30.21% 32.63% 120 20.26% 21.78% 23.53% 30.21% 32.63%
24 131 23.57% 25.36% 27.76% 30.42% 32.35% 131 23.58% 25.36% 27.75% 30.42% 32.35%
25 100 27.83% 30.23% 32.44% 30.15% 31.55% 100 27.82% 30.21% 32.41% 30.15% 31.56%
26 96 32.64% 34.82% 37.92% 29.43% 30.14% 96 32.61% 34.78% 37.87% 29.43% 30.15%
27 78 38.11% 41.22% 45.40% 27.86% 27.60% 78 38.06% 41.16% 45.33% 27.88% 27.63%
28 74 46.06% 50.68% 56.52% 24.67% 22.94% 74 45.99% 50.61% 56.45% 24.70% 22.97%
29 39 57.26% 63.65% 71.89% 19.14% 15.41% 39 57.19% 63.61% 71.88% 19.16% 15.41%
30 16 72.90% 81.56% 92.72% 10.17% 4.11% 16 72.89% 81.57% 92.74% 10.16% 4.10%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel C-(i): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1183 0.00% 0.12% 0.23% 2.32% 5.08% 1672 0.00% 0.10% 0.20% 2.06% 4.68%
2 1037 0.23% 0.34% 0.47% 4.92% 8.03% 1218 0.20% 0.30% 0.42% 4.56% 7.51%
3 848 0.47% 0.61% 0.76% 7.20% 10.61% 1011 0.42% 0.54% 0.68% 6.71% 9.99%
4 817 0.76% 0.91% 1.08% 9.28% 13.00% 756 0.68% 0.82% 0.97% 8.72% 12.25%
5 621 1.08% 1.26% 1.44% 11.32% 15.16% 624 0.97% 1.13% 1.30% 10.59% 14.32%
6 516 1.45% 1.63% 1.83% 13.12% 17.08% 514 1.30% 1.47% 1.65% 12.36% 16.25%
7 456 1.83% 2.02% 2.25% 14.78% 18.89% 461 1.65% 1.84% 2.04% 14.03% 18.04%
8 417 2.25% 2.47% 2.71% 16.42% 20.60% 379 2.04% 2.25% 2.48% 15.63% 19.80%
9 397 2.71% 2.95% 3.22% 17.98% 22.25% 419 2.48% 2.72% 2.99% 17.26% 21.55%
10 340 3.22% 3.49% 3.80% 19.51% 23.87% 320 2.99% 3.26% 3.58% 18.90% 23.29%
11 390 3.80% 4.11% 4.46% 21.07% 25.44% 308 3.59% 3.91% 4.23% 20.57% 24.92%
12 301 4.46% 4.81% 5.18% 22.57% 26.91% 263 4.23% 4.56% 4.94% 22.06% 26.45%
13 253 5.19% 5.56% 5.94% 24.00% 28.25% 246 4.94% 5.32% 5.75% 23.56% 27.93%
14 260 5.95% 6.32% 6.75% 25.25% 29.46% 210 5.76% 6.19% 6.66% 25.05% 29.35%
15 230 6.76% 7.18% 7.69% 26.48% 30.66% 181 6.69% 7.16% 7.69% 26.45% 30.67%
16 238 7.70% 8.22% 8.82% 27.75% 31.86% 189 7.71% 8.24% 8.80% 27.78% 31.84%
17 204 8.82% 9.43% 10.10% 29.00% 32.95% 148 8.81% 9.37% 9.99% 28.95% 32.87%
18 199 10.13% 10.80% 11.50% 30.16% 33.88% 160 10.03% 10.65% 11.42% 30.04% 33.84%
19 180 11.51% 12.21% 12.99% 31.11% 34.64% 115 11.48% 12.21% 13.00% 31.11% 34.65%
20 164 13.01% 13.79% 14.65% 31.95% 35.26% 127 13.07% 13.81% 14.75% 31.96% 35.29%
21 131 14.66% 15.52% 16.55% 32.65% 35.72% 96 14.81% 15.78% 17.00% 32.73% 35.79%
22 159 16.59% 17.63% 19.02% 33.23% 36.01% 112 17.03% 18.27% 19.68% 33.36% 36.03%
23 125 19.06% 20.44% 22.04% 33.65% 35.99% 82 19.79% 21.10% 22.75% 33.70% 35.94%
24 131 22.08% 23.66% 25.80% 33.73% 35.54% 80 22.94% 24.63% 26.24% 33.69% 35.47%
25 100 25.86% 28.02% 30.03% 33.32% 34.62% 82 26.51% 28.28% 30.88% 33.28% 34.39%
26 99 30.21% 32.32% 35.40% 32.49% 32.98% 66 31.05% 33.60% 36.61% 32.17% 32.56%
27 78 35.56% 38.56% 43.10% 30.71% 30.01% 53 36.93% 40.19% 44.36% 30.16% 29.47%
28 72 43.25% 47.79% 54.06% 27.23% 24.98% 56 44.65% 49.01% 55.56% 26.71% 24.24%
29 39 54.39% 60.83% 69.60% 21.24% 16.95% 36 56.70% 63.08% 71.90% 20.12% 15.71%
30 15 70.20% 79.01% 90.32% 11.73% 5.48% 16 73.01% 81.99% 93.07% 10.10% 3.93%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel C-(ii): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1185 0.00% 0.11% 0.21% 2.16% 4.79% 1185 0.00% 0.11% 0.21% 2.17% 4.81%
2 1038 0.21% 0.31% 0.43% 4.63% 7.62% 1038 0.21% 0.31% 0.44% 4.65% 7.65%
3 852 0.43% 0.56% 0.69% 6.82% 10.11% 852 0.44% 0.56% 0.70% 6.84% 10.15%
4 815 0.70% 0.83% 1.00% 8.82% 12.44% 815 0.70% 0.84% 1.01% 8.85% 12.47%
5 617 1.00% 1.17% 1.34% 10.81% 14.57% 617 1.01% 1.17% 1.35% 10.84% 14.61%
6 516 1.34% 1.51% 1.70% 12.58% 16.48% 516 1.35% 1.52% 1.71% 12.62% 16.53%
7 459 1.70% 1.89% 2.11% 14.23% 18.31% 459 1.71% 1.90% 2.12% 14.27% 18.36%
8 426 2.11% 2.32% 2.56% 15.90% 20.07% 426 2.12% 2.33% 2.57% 15.94% 20.12%
9 394 2.56% 2.79% 3.06% 17.49% 21.75% 394 2.57% 2.81% 3.07% 17.53% 21.80%
10 345 3.06% 3.32% 3.63% 19.06% 23.42% 345 3.07% 3.34% 3.65% 19.11% 23.46%
11 380 3.63% 3.94% 4.27% 20.65% 25.03% 380 3.65% 3.95% 4.29% 20.69% 25.07%
12 297 4.28% 4.62% 5.00% 22.18% 26.56% 297 4.30% 4.64% 5.02% 22.23% 26.61%
13 253 5.01% 5.38% 5.76% 23.67% 27.96% 253 5.03% 5.40% 5.79% 23.71% 28.00%
14 259 5.76% 6.15% 6.58% 24.98% 29.23% 259 5.79% 6.17% 6.61% 25.02% 29.27%
15 230 6.59% 7.02% 7.55% 26.27% 30.50% 230 6.62% 7.05% 7.58% 26.31% 30.54%
16 239 7.57% 8.10% 8.74% 27.62% 31.78% 239 7.60% 8.13% 8.77% 27.66% 31.81%
17 203 8.74% 9.38% 10.08% 28.95% 32.94% 203 8.77% 9.41% 10.12% 28.98% 32.96%
18 200 10.11% 10.83% 11.57% 30.18% 33.93% 200 10.14% 10.86% 11.61% 30.20% 33.95%
19 180 11.59% 12.33% 13.17% 31.18% 34.72% 180 11.62% 12.36% 13.21% 31.20% 34.74%
20 165 13.19% 14.03% 14.95% 32.06% 35.35% 165 13.22% 14.06% 14.99% 32.08% 35.36%
21 129 14.97% 15.89% 16.98% 32.77% 35.79% 129 15.00% 15.92% 17.02% 32.78% 35.80%
22 158 17.02% 18.13% 19.59% 33.33% 36.03% 158 17.05% 18.16% 19.61% 33.34% 36.03%
23 125 19.63% 21.12% 22.81% 33.70% 35.93% 125 19.66% 21.14% 22.83% 33.70% 35.93%
24 132 22.85% 24.55% 26.80% 33.69% 35.36% 132 22.86% 24.56% 26.80% 33.69% 35.36%
25 100 26.87% 29.09% 31.13% 33.15% 34.32% 100 26.86% 29.07% 31.10% 33.15% 34.33%
26 98 31.32% 33.39% 36.36% 32.23% 32.65% 98 31.29% 33.34% 36.30% 32.24% 32.67%
27 79 36.45% 39.42% 43.72% 30.42% 29.75% 79 36.39% 39.35% 43.63% 30.45% 29.79%
28 74 43.86% 48.19% 54.21% 27.06% 24.91% 74 43.77% 48.09% 54.11% 27.11% 24.95%
29 38 55.08% 60.62% 69.16% 21.34% 17.19% 38 54.99% 60.55% 69.13% 21.38% 17.20%
30 14 71.04% 79.01% 90.34% 11.74% 5.47% 14 71.02% 79.02% 90.37% 11.73% 5.45%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel D-(i): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1065 0.00% 0.13% 0.25% 3.22% 6.93% 1090 0.00% 0.07% 0.14% 2.12% 4.83%
2 990 0.25% 0.37% 0.50% 6.53% 10.59% 1023 0.14% 0.21% 0.29% 4.49% 7.62%
3 835 0.50% 0.64% 0.79% 9.31% 13.65% 832 0.29% 0.37% 0.46% 6.56% 10.04%
4 771 0.79% 0.94% 1.11% 11.78% 16.33% 773 0.46% 0.55% 0.65% 8.45% 12.21%
5 624 1.11% 1.28% 1.46% 14.02% 18.72% 611 0.65% 0.75% 0.86% 10.24% 14.24%
6 541 1.47% 1.65% 1.86% 16.09% 20.94% 538 0.86% 0.97% 1.09% 11.93% 16.18%
7 518 1.86% 2.07% 2.31% 18.09% 23.05% 507 1.09% 1.22% 1.36% 13.62% 18.07%
8 458 2.31% 2.55% 2.81% 20.04% 25.04% 440 1.36% 1.51% 1.67% 15.32% 19.95%
9 446 2.82% 3.08% 3.37% 21.91% 26.90% 460 1.66% 1.84% 2.04% 17.04% 21.85%
10 369 3.37% 3.66% 3.99% 23.66% 28.63% 403 2.04% 2.25% 2.48% 18.84% 23.78%
11 395 3.99% 4.32% 4.66% 25.34% 30.21% 446 2.46% 2.73% 3.02% 20.70% 25.76%
12 309 4.67% 5.01% 5.39% 26.88% 31.64% 334 3.02% 3.31% 3.63% 22.62% 27.65%
13 253 5.39% 5.77% 6.13% 28.31% 32.88% 337 3.62% 3.96% 4.33% 24.46% 29.45%
14 259 6.14% 6.50% 6.91% 29.51% 33.98% 284 4.33% 4.69% 5.13% 26.19% 31.17%
15 231 6.92% 7.33% 7.81% 30.67% 35.03% 277 5.14% 5.58% 6.10% 27.97% 32.83%
16 236 7.83% 8.32% 8.89% 31.85% 36.05% 218 6.11% 6.62% 7.17% 29.69% 34.30%
17 203 8.90% 9.46% 10.09% 32.97% 36.94% 217 7.18% 7.77% 8.38% 31.22% 35.59%
18 194 10.11% 10.74% 11.35% 33.97% 37.66% 184 8.38% 9.04% 9.67% 32.58% 36.66%
19 179 11.39% 12.02% 12.76% 34.77% 38.24% 161 9.67% 10.43% 11.22% 33.75% 37.59%
20 174 12.78% 13.53% 14.35% 35.48% 38.67% 157 11.25% 12.24% 13.15% 34.89% 38.36%
21 132 14.38% 15.18% 16.14% 36.04% 38.93% 121 13.18% 14.24% 15.46% 35.75% 38.85%
22 158 16.17% 17.12% 18.37% 36.44% 38.99% 122 15.56% 16.82% 18.27% 36.39% 38.99%
23 125 18.41% 19.68% 21.14% 36.66% 38.75% 97 18.35% 19.84% 21.74% 36.66% 38.66%
24 132 21.17% 22.64% 24.60% 36.55% 38.09% 116 21.91% 24.07% 26.22% 36.39% 37.68%
25 100 24.66% 26.62% 28.45% 35.95% 37.02% 67 26.30% 28.76% 31.14% 35.47% 36.10%
26 99 28.62% 30.53% 33.34% 34.99% 35.28% 56 31.23% 33.89% 37.32% 33.95% 33.64%
27 79 33.48% 36.28% 40.52% 33.10% 32.22% 61 38.04% 42.14% 46.64% 30.76% 29.30%
28 73 40.65% 44.95% 51.05% 29.53% 27.08% 31 47.42% 51.44% 56.81% 26.48% 24.08%
29 38 51.95% 57.57% 66.13% 23.41% 19.04% 23 57.45% 62.70% 69.62% 20.73% 17.12%
30 14 67.98% 75.89% 87.48% 13.58% 7.10% 14 71.75% 80.03% 91.19% 11.28% 5.00%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel D-(ii): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1156 0.00% 0.12% 0.24% 3.10% 6.74% 1156 0.00% 0.13% 0.24% 3.11% 6.77%
2 1042 0.24% 0.35% 0.48% 6.35% 10.34% 1042 0.24% 0.35% 0.49% 6.38% 10.38%
3 845 0.48% 0.61% 0.76% 9.09% 13.38% 845 0.49% 0.62% 0.77% 9.13% 13.43%
4 819 0.76% 0.91% 1.08% 11.53% 16.12% 819 0.77% 0.92% 1.09% 11.58% 16.17%
5 617 1.08% 1.26% 1.44% 13.87% 18.55% 617 1.09% 1.27% 1.45% 13.92% 18.61%
6 524 1.44% 1.62% 1.81% 15.92% 20.70% 524 1.45% 1.63% 1.82% 15.97% 20.76%
7 471 1.81% 2.01% 2.23% 17.82% 22.72% 471 1.83% 2.02% 2.25% 17.88% 22.78%
8 421 2.23% 2.45% 2.69% 19.68% 24.59% 421 2.25% 2.47% 2.70% 19.74% 24.65%
9 397 2.69% 2.93% 3.19% 21.40% 26.34% 397 2.71% 2.95% 3.21% 21.46% 26.40%
10 340 3.19% 3.46% 3.76% 23.06% 28.03% 340 3.21% 3.48% 3.79% 23.12% 28.09%
11 390 3.77% 4.07% 4.41% 24.74% 29.66% 390 3.79% 4.10% 4.44% 24.80% 29.72%
12 301 4.42% 4.76% 5.13% 26.35% 31.16% 301 4.44% 4.79% 5.16% 26.41% 31.21%
13 253 5.14% 5.51% 5.89% 27.85% 32.50% 253 5.17% 5.54% 5.92% 27.91% 32.55%
14 260 5.90% 6.27% 6.70% 29.15% 33.69% 260 5.93% 6.30% 6.73% 29.20% 33.74%
15 230 6.71% 7.13% 7.64% 30.41% 34.85% 230 6.74% 7.17% 7.68% 30.46% 34.89%
16 236 7.66% 8.17% 8.78% 31.69% 35.96% 236 7.70% 8.21% 8.82% 31.73% 35.99%
17 204 8.78% 9.39% 10.07% 32.91% 36.93% 204 8.82% 9.43% 10.11% 32.94% 36.96%
18 197 10.09% 10.78% 11.48% 34.00% 37.72% 197 10.13% 10.82% 11.52% 34.03% 37.74%
19 182 11.50% 12.21% 13.01% 34.87% 38.32% 182 11.54% 12.25% 13.06% 34.89% 38.33%
20 165 13.02% 13.83% 14.69% 35.60% 38.73% 165 13.07% 13.87% 14.74% 35.62% 38.74%
21 132 14.72% 15.61% 16.66% 36.15% 38.97% 132 14.77% 15.65% 16.70% 36.16% 38.97%
22 158 16.70% 17.74% 19.12% 36.53% 38.96% 158 16.74% 17.78% 19.15% 36.53% 38.95%
23 125 19.16% 20.56% 22.15% 36.66% 38.60% 125 19.19% 20.59% 22.17% 36.66% 38.59%
24 132 22.18% 23.78% 25.88% 36.42% 37.77% 132 22.21% 23.79% 25.89% 36.42% 37.77%
25 100 25.94% 28.01% 29.91% 35.65% 36.53% 100 25.94% 28.00% 29.89% 35.65% 36.54%
26 96 30.08% 31.94% 34.58% 34.58% 34.78% 96 30.06% 31.91% 34.52% 34.59% 34.81%
27 80 34.74% 37.44% 41.42% 32.67% 31.80% 80 34.68% 37.36% 41.32% 32.70% 31.85%
28 75 41.49% 45.48% 50.96% 29.29% 27.13% 75 41.39% 45.36% 50.83% 29.34% 27.20%
29 38 51.75% 56.79% 64.73% 23.81% 19.81% 38 51.61% 56.68% 64.67% 23.87% 19.84%
30 14 66.55% 74.83% 87.29% 14.16% 7.21% 14 66.50% 74.83% 87.34% 14.16% 7.18%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel E-(i): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

  

Baseline logit model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 937 0.00% 0.15% 0.27% 4.29% 9.08% 1599 0.00% 0.12% 0.22% 3.66% 8.16%
2 943 0.27% 0.39% 0.53% 8.37% 13.46% 1250 0.22% 0.33% 0.45% 7.53% 12.35%
3 818 0.53% 0.67% 0.82% 11.67% 16.96% 1029 0.45% 0.58% 0.71% 10.66% 15.76%
4 716 0.82% 0.98% 1.13% 14.48% 19.79% 762 0.71% 0.85% 1.00% 13.38% 18.67%
5 577 1.13% 1.28% 1.45% 16.75% 22.25% 640 1.00% 1.15% 1.31% 15.81% 21.23%
6 575 1.45% 1.63% 1.82% 18.99% 24.57% 530 1.31% 1.47% 1.65% 18.04% 23.56%
7 486 1.83% 2.02% 2.22% 21.12% 26.64% 499 1.65% 1.83% 2.04% 20.15% 25.74%
8 430 2.23% 2.43% 2.66% 22.99% 28.52% 423 2.04% 2.25% 2.48% 22.20% 27.78%
9 413 2.66% 2.89% 3.13% 24.80% 30.26% 423 2.48% 2.71% 2.97% 24.12% 29.70%
10 398 3.14% 3.38% 3.66% 26.50% 31.89% 316 2.97% 3.24% 3.52% 26.03% 31.49%
11 345 3.66% 3.93% 4.25% 28.13% 33.42% 315 3.53% 3.81% 4.12% 27.78% 33.10%
12 399 4.25% 4.57% 4.92% 29.72% 34.87% 268 4.12% 4.43% 4.79% 29.40% 34.62%
13 313 4.93% 5.28% 5.67% 31.23% 36.20% 246 4.80% 5.16% 5.56% 30.99% 36.03%
14 288 5.68% 6.08% 6.49% 32.66% 37.37% 209 5.57% 5.98% 6.46% 32.50% 37.34%
15 290 6.50% 6.90% 7.37% 33.89% 38.41% 209 6.47% 6.95% 7.45% 33.95% 38.48%
16 264 7.40% 7.89% 8.44% 35.10% 39.37% 185 7.46% 7.97% 8.54% 35.19% 39.45%
17 233 8.45% 9.00% 9.61% 36.20% 40.16% 165 8.58% 9.13% 9.74% 36.31% 40.24%
18 207 9.62% 10.24% 10.90% 37.15% 40.79% 114 9.75% 10.36% 11.03% 37.23% 40.84%
19 219 10.92% 11.58% 12.35% 37.92% 41.25% 139 11.06% 11.72% 12.53% 37.99% 41.29%
20 193 12.38% 13.16% 13.94% 38.56% 41.51% 96 12.58% 13.36% 14.35% 38.63% 41.55%
21 137 14.00% 14.78% 15.68% 38.98% 41.59% 112 14.37% 15.37% 16.50% 39.08% 41.56%
22 159 15.70% 16.60% 17.75% 39.22% 41.45% 82 16.59% 17.65% 18.98% 39.26% 41.27%
23 125 17.78% 18.95% 20.28% 39.24% 41.02% 80 19.13% 20.50% 21.81% 39.11% 40.65%
24 132 20.31% 21.65% 23.44% 38.96% 40.20% 77 22.03% 23.34% 25.09% 38.65% 39.67%
25 100 23.49% 25.27% 26.93% 38.20% 39.01% 60 25.46% 27.28% 29.48% 37.64% 38.02%
26 99 27.09% 28.83% 31.39% 37.15% 37.22% 50 29.69% 31.86% 35.28% 36.08% 35.47%
27 81 31.52% 34.16% 38.09% 35.18% 34.14% 54 35.63% 38.86% 42.62% 33.16% 31.88%
28 71 38.25% 42.14% 47.68% 31.64% 29.25% 32 43.35% 47.38% 53.00% 29.07% 26.40%
29 38 48.51% 53.84% 62.05% 25.74% 21.43% 25 53.56% 59.53% 67.44% 22.70% 18.43%
30 14 63.87% 71.93% 84.18% 15.86% 8.98% 11 69.79% 78.81% 88.86% 12.01% 6.32%
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Table 3: TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel E-(ii): Parameter permutations with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

Baseline logit model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1111 0.00% 0.14% 0.27% 4.23% 9.06% 1111 0.00% 0.14% 0.27% 4.26% 9.11%
2 1057 0.27% 0.39% 0.53% 8.37% 13.51% 1057 0.27% 0.39% 0.54% 8.41% 13.57%
3 859 0.53% 0.68% 0.84% 11.74% 17.11% 859 0.54% 0.68% 0.84% 11.79% 17.17%
4 826 0.84% 1.00% 1.18% 14.63% 20.21% 826 0.84% 1.00% 1.19% 14.70% 20.28%
5 617 1.18% 1.36% 1.54% 17.30% 22.87% 617 1.19% 1.37% 1.56% 17.37% 22.95%
6 530 1.55% 1.73% 1.93% 19.58% 25.16% 530 1.56% 1.74% 1.95% 19.66% 25.24%
7 463 1.93% 2.13% 2.35% 21.65% 27.24% 463 1.95% 2.15% 2.37% 21.72% 27.32%
8 424 2.35% 2.58% 2.81% 23.61% 29.13% 424 2.37% 2.60% 2.83% 23.69% 29.21%
9 398 2.82% 3.06% 3.32% 25.42% 30.88% 398 2.84% 3.08% 3.34% 25.49% 30.95%
10 345 3.32% 3.59% 3.89% 27.13% 32.53% 345 3.35% 3.61% 3.92% 27.21% 32.60%
11 392 3.90% 4.21% 4.54% 28.84% 34.09% 392 3.93% 4.23% 4.58% 28.91% 34.16%
12 301 4.55% 4.89% 5.25% 30.43% 35.48% 301 4.58% 4.92% 5.28% 30.50% 35.54%
13 253 5.26% 5.63% 5.99% 31.88% 36.69% 253 5.29% 5.66% 6.03% 31.95% 36.75%
14 257 6.00% 6.36% 6.77% 33.11% 37.73% 257 6.04% 6.40% 6.81% 33.17% 37.78%
15 231 6.78% 7.19% 7.68% 34.27% 38.71% 231 6.82% 7.23% 7.72% 34.33% 38.75%
16 236 7.69% 8.19% 8.77% 35.43% 39.62% 236 7.74% 8.24% 8.82% 35.48% 39.66%
17 206 8.79% 9.37% 10.03% 36.51% 40.39% 203 8.84% 9.41% 10.06% 36.54% 40.41%
18 197 10.05% 10.71% 11.38% 37.44% 40.96% 198 10.08% 10.74% 11.42% 37.47% 40.98%
19 182 11.39% 12.07% 12.83% 38.15% 41.35% 182 11.43% 12.11% 12.87% 38.17% 41.36%
20 165 12.84% 13.61% 14.43% 38.70% 41.55% 167 12.89% 13.66% 14.48% 38.71% 41.56%
21 132 14.45% 15.29% 16.29% 39.07% 41.57% 132 14.51% 15.35% 16.34% 39.08% 41.56%
22 158 16.32% 17.31% 18.60% 39.25% 41.33% 158 16.38% 17.36% 18.65% 39.25% 41.32%
23 125 18.64% 19.96% 21.45% 39.17% 40.75% 125 18.69% 20.00% 21.49% 39.16% 40.74%
24 132 21.49% 22.98% 24.96% 38.72% 39.71% 131 21.53% 23.00% 24.86% 38.72% 39.74%
25 100 25.01% 26.95% 28.73% 37.74% 38.32% 101 24.98% 26.94% 28.73% 37.74% 38.33%
26 96 28.90% 30.63% 33.10% 36.53% 36.47% 96 28.89% 30.61% 33.05% 36.54% 36.50%
27 78 33.24% 35.66% 38.88% 34.56% 33.75% 78 33.19% 35.59% 38.77% 34.59% 33.80%
28 77 39.39% 43.05% 48.10% 31.20% 29.03% 77 39.28% 42.90% 47.93% 31.27% 29.12%
29 38 48.80% 53.31% 60.47% 26.02% 22.31% 38 48.63% 53.15% 60.36% 26.10% 22.37%
30 14 62.15% 70.40% 83.58% 16.72% 9.32% 14 62.06% 70.37% 83.63% 16.73% 9.29%
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Table 4: Baseline asset-equivalent value-at-risk and conditional value-at-risk capital requirements 

This table summarizes the asset-equivalent weighted-average value-at-risk and conditional value-at-risk bank capital requirements or 

equity capital ratios for all the baseline permutations of both TTC adjustments (TTC0, TTC1, TTC2, and TTC3) and asset correlation 

values (from 15% to 35% in increments of 5%). Across the value-at-risk and conditional value-at-risk panels, the TTC1 adjustments 

consistently introduce non-trivial downward biases in the asset-equivalent weighted-average equity capital ratios relative to the TTC0 

brute-force adjustments and the TTC2/TTC3 higher-order Taylor-series approximations. The more accurate TTC0, TTC2, and TTC3 

asset-equivalent weighted-average value-at-risk and conditional value-at-risk bank capital requirements land in the range of 9.66% to 

26.66% across the entire spectrum of asset correlation values. The quantitative results that favor the recent proposal for substantially 

heighted bank capital requirements indicate equity capital ratios from 22% to 26%+ when the prudent econometrician raises the asset 

correlation value to 35% to account for potential default contagion in times of extreme financial stress. This evidence resonates with 

the central thesis that the typical bank should hold a much larger capital cushion to absorb severe losses in a financial downturn.  

 

 

 
 

 

 

 

Baseline equity capital ρ=15% ρ =20% ρ=25% ρ =30% ρ=35%
Value-at-risk capital 
TTC0 9.74% 12.60% 15.59% 18.75% 22.05%

TTC1 8.73% 10.97% 13.21% 15.52% 17.90%

TTC2 9.66% 12.43% 15.27% 18.23% 21.28%

TTC3 9.67% 12.44% 15.29% 18.27% 21.33%

Conditional value-at-risk capital
TTC0 11.92% 15.41% 19.05% 22.83% 26.66%

TTC1 10.83% 13.67% 16.57% 19.33% 22.63%

TTC2 11.87% 15.27% 18.67% 22.27% 25.93%

TTC3 11.17% 15.29% 18.70% 22.31% 25.98%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel A-(i): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1541 0.00% 0.11% 0.22% 1.14% 2.54% 1784 0.00% 0.10% 0.21% 1.08% 2.46%
2 1112 0.22% 0.33% 0.46% 2.66% 4.25% 1208 0.21% 0.32% 0.45% 2.57% 4.16%
3 877 0.46% 0.59% 0.73% 3.99% 5.74% 994 0.45% 0.58% 0.74% 3.91% 5.79%
4 672 0.73% 0.87% 1.02% 5.18% 7.12% 805 0.74% 0.90% 1.10% 5.31% 7.44%
5 568 1.02% 1.17% 1.35% 6.33% 8.46% 687 1.10% 1.29% 1.53% 6.75% 9.12%
6 511 1.35% 1.53% 1.72% 7.50% 9.79% 582 1.53% 1.77% 2.03% 8.23% 10.78%
7 434 1.72% 1.92% 2.13% 8.66% 11.07% 481 2.03% 2.29% 2.59% 9.65% 12.37%
8 387 2.13% 2.34% 2.57% 9.77% 12.30% 434 2.60% 2.90% 3.21% 11.09% 13.88%
9 370 2.57% 2.81% 3.07% 10.89% 13.56% 335 3.21% 3.52% 3.86% 12.38% 15.28%
10 337 3.06% 3.36% 3.63% 12.07% 14.82% 260 3.86% 4.20% 4.53% 13.65% 16.56%
11 354 3.63% 3.96% 4.33% 13.23% 16.20% 255 4.54% 4.87% 5.24% 14.76% 17.75%
12 280 4.33% 4.71% 5.12% 14.50% 17.56% 223 5.24% 5.61% 6.04% 15.88% 18.96%
13 328 5.10% 5.60% 6.09% 15.86% 19.04% 204 6.05% 6.48% 6.94% 17.03% 20.15%
14 276 6.10% 6.64% 7.21% 17.23% 20.49% 174 6.95% 7.41% 7.93% 18.14% 21.30%
15 239 7.23% 7.81% 8.47% 18.58% 21.87% 160 7.95% 8.45% 9.07% 19.24% 22.45%
16 217 8.48% 9.15% 9.92% 19.90% 23.20% 188 9.09% 9.70% 10.38% 20.39% 23.59%
17 200 9.94% 10.70% 11.48% 21.20% 24.40% 145 10.39% 11.07% 11.82% 21.48% 24.63%
18 183 11.50% 12.29% 13.19% 22.31% 25.46% 160 11.87% 12.63% 13.58% 22.52% 25.67%
19 164 13.20% 14.10% 15.06% 23.36% 26.40% 115 13.65% 14.55% 15.51% 23.58% 26.59%
20 130 15.10% 16.09% 17.19% 24.28% 27.21% 127 15.60% 16.51% 17.65% 24.45% 27.35%
21 140 17.29% 18.36% 19.58% 25.10% 27.86% 95 17.73% 18.90% 20.30% 25.26% 28.01%
22 96 19.64% 20.88% 22.29% 25.76% 28.32% 109 20.41% 21.88% 23.50% 25.96% 28.45%
23 113 22.40% 23.91% 25.58% 26.27% 28.57% 80 23.53% 25.13% 27.15% 26.40% 28.59%
24 90 25.71% 27.44% 29.58% 26.53% 28.49% 79 27.25% 29.25% 31.29% 26.55% 28.35%
25 94 29.78% 32.01% 34.33% 26.44% 27.97% 84 31.40% 33.51% 36.19% 26.32% 27.65%
26 83 34.38% 36.71% 39.99% 25.94% 26.86% 60 36.70% 39.23% 42.23% 25.53% 26.30%
27 75 40.18% 43.56% 48.22% 24.63% 24.53% 52 42.50% 45.55% 50.34% 24.13% 23.82%
28 74 48.99% 54.27% 60.87% 21.51% 19.77% 65 50.56% 55.46% 61.97% 21.10% 19.30%
29 38 61.68% 68.24% 75.47% 16.05% 13.06% 38 62.86% 69.87% 77.44% 15.34% 12.08%
30 17 76.77% 84.84% 94.61% 8.16% 3.02% 17 78.76% 86.56% 95.54% 7.28% 2.50%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel A-(ii): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1729 0.00% 0.12% 0.25% 1.23% 2.75% 1721 0.00% 0.12% 0.25% 1.23% 2.75%
2 1167 0.25% 0.37% 0.52% 2.88% 4.62% 1171 0.25% 0.37% 0.52% 2.88% 4.61%
3 992 0.52% 0.67% 0.85% 4.36% 6.34% 985 0.52% 0.67% 0.85% 4.36% 6.32%
4 714 0.85% 1.03% 1.21% 5.79% 7.93% 718 0.85% 1.02% 1.21% 5.78% 7.92%
5 584 1.21% 1.41% 1.62% 7.11% 9.43% 579 1.21% 1.40% 1.61% 7.10% 9.41%
6 497 1.62% 1.83% 2.06% 8.40% 10.86% 490 1.61% 1.82% 2.04% 8.37% 10.82%
7 434 2.06% 2.29% 2.54% 9.65% 12.23% 432 2.05% 2.28% 2.52% 9.61% 12.17%
8 390 2.54% 2.80% 3.07% 10.87% 13.57% 393 2.52% 2.78% 3.06% 10.82% 13.54%
9 352 3.08% 3.39% 3.67% 12.12% 14.90% 363 3.06% 3.37% 3.67% 12.09% 14.89%
10 336 3.68% 3.99% 4.36% 13.28% 16.26% 319 3.67% 3.97% 4.32% 13.23% 16.18%
11 273 4.37% 4.74% 5.13% 14.55% 17.59% 274 4.32% 4.68% 5.07% 14.46% 17.49%
12 287 5.14% 5.57% 5.99% 15.81% 18.89% 280 5.07% 5.49% 5.92% 15.71% 18.79%
13 240 5.99% 6.46% 6.93% 17.01% 20.14% 260 5.91% 6.39% 6.88% 16.92% 20.08%
14 212 6.93% 7.44% 7.99% 18.18% 21.37% 220 6.89% 7.42% 7.97% 18.16% 21.35%
15 196 8.00% 8.55% 9.19% 19.34% 22.56% 197 7.99% 8.55% 9.19% 19.34% 22.56%
16 179 9.20% 9.84% 10.56% 20.50% 23.72% 180 9.20% 9.84% 10.57% 20.51% 23.73%
17 186 10.59% 11.29% 12.03% 21.63% 24.76% 186 10.60% 11.30% 12.04% 21.64% 24.77%
18 146 12.04% 12.78% 13.61% 22.62% 25.69% 146 12.06% 12.79% 13.63% 22.62% 25.70%
19 157 13.62% 14.45% 15.42% 23.54% 26.55% 157 13.63% 14.46% 15.43% 23.54% 26.55%
20 111 15.43% 16.40% 17.45% 24.41% 27.29% 111 15.44% 16.40% 17.46% 24.41% 27.29%
21 138 17.50% 18.53% 19.76% 25.16% 27.90% 138 17.50% 18.54% 19.77% 25.16% 27.90%
22 96 19.82% 21.08% 22.52% 25.81% 28.35% 96 19.83% 21.09% 22.52% 25.81% 28.35%
23 113 22.63% 24.15% 25.85% 26.30% 28.58% 113 22.63% 24.15% 25.84% 26.30% 28.58%
24 90 25.98% 27.72% 29.87% 26.54% 28.47% 90 25.98% 27.71% 29.86% 26.54% 28.47%
25 94 30.07% 32.30% 34.62% 26.42% 27.92% 94 30.06% 32.29% 34.60% 26.42% 27.93%
26 83 34.66% 36.97% 40.21% 25.90% 26.80% 83 34.65% 36.94% 40.18% 25.91% 26.81%
27 75 40.40% 43.71% 48.28% 24.59% 24.51% 75 40.37% 43.68% 48.25% 24.60% 24.52%
28 74 49.03% 54.20% 60.67% 21.53% 19.85% 74 49.00% 54.17% 60.65% 21.54% 19.86%
29 39 61.47% 68.21% 76.54% 16.07% 12.53% 39 61.45% 68.20% 76.54% 16.07% 12.53%
30 16 77.51% 85.25% 94.65% 7.95% 3.00% 16 77.51% 85.26% 94.65% 7.95% 2.99%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel B-(i): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1558 0.00% 0.11% 0.22% 1.13% 2.54% 1785 0.00% 0.09% 0.20% 1.04% 2.38%
2 1127 0.22% 0.33% 0.46% 2.66% 4.26% 1207 0.20% 0.31% 0.43% 2.49% 4.04%
3 877 0.46% 0.59% 0.73% 4.00% 5.77% 996 0.43% 0.55% 0.71% 3.80% 5.64%
4 673 0.73% 0.87% 1.03% 5.20% 7.14% 804 0.71% 0.87% 1.06% 5.17% 7.28%
5 549 1.03% 1.18% 1.36% 6.35% 8.48% 686 1.06% 1.25% 1.48% 6.59% 8.94%
6 518 1.36% 1.53% 1.73% 7.52% 9.81% 582 1.48% 1.71% 1.97% 8.06% 10.58%
7 421 1.73% 1.92% 2.13% 8.67% 11.07% 481 1.97% 2.22% 2.52% 9.47% 12.17%
8 404 2.13% 2.35% 2.59% 9.80% 12.36% 434 2.52% 2.82% 3.12% 10.90% 13.67%
9 382 2.59% 2.85% 3.12% 10.97% 13.67% 335 3.12% 3.42% 3.76% 12.19% 15.07%
10 350 3.12% 3.43% 3.72% 12.21% 14.99% 260 3.76% 4.09% 4.42% 13.46% 16.35%
11 336 3.72% 4.04% 4.41% 13.37% 16.35% 255 4.42% 4.75% 5.11% 14.57% 17.55%
12 272 4.42% 4.78% 5.18% 14.63% 17.66% 223 5.12% 5.48% 5.90% 15.69% 18.77%
13 287 5.18% 5.61% 6.03% 15.88% 18.95% 204 5.91% 6.33% 6.78% 16.84% 19.96%
14 238 6.04% 6.50% 6.97% 17.06% 20.19% 174 6.80% 7.25% 7.76% 17.96% 21.12%
15 225 6.97% 7.50% 8.06% 18.24% 21.44% 160 7.78% 8.28% 8.89% 19.07% 22.28%
16 208 8.08% 8.68% 9.35% 19.46% 22.71% 188 8.91% 9.52% 10.20% 20.23% 23.43%
17 190 9.36% 10.07% 10.79% 20.70% 23.90% 145 10.20% 10.88% 11.62% 21.33% 24.49%
18 198 10.79% 11.60% 12.44% 21.85% 25.02% 160 11.67% 12.42% 13.36% 22.39% 25.56%
19 170 12.46% 13.35% 14.23% 22.95% 26.01% 115 13.44% 14.33% 15.29% 23.47% 26.49%
20 153 14.24% 15.26% 16.36% 23.92% 26.92% 127 15.37% 16.28% 17.42% 24.36% 27.28%
21 156 16.38% 17.76% 19.02% 24.91% 27.73% 95 17.50% 18.66% 20.06% 25.19% 27.96%
22 121 19.05% 20.50% 22.16% 25.68% 28.31% 109 20.17% 21.64% 23.25% 25.92% 28.43%
23 116 22.29% 23.87% 25.58% 26.26% 28.57% 80 23.28% 24.89% 26.91% 26.37% 28.59%
24 90 25.71% 27.42% 29.56% 26.53% 28.49% 79 27.01% 29.01% 31.05% 26.55% 28.38%
25 94 29.76% 31.98% 34.29% 26.44% 27.97% 84 31.17% 33.29% 35.97% 26.34% 27.69%
26 83 34.34% 36.65% 39.92% 25.95% 26.87% 60 36.49% 39.03% 42.05% 25.56% 26.35%
27 75 40.11% 43.47% 48.11% 24.65% 24.56% 52 42.32% 45.39% 50.21% 24.17% 23.86%
28 74 48.87% 54.14% 60.71% 21.55% 19.84% 65 50.43% 55.37% 61.94% 21.13% 19.32%
29 38 61.52% 68.07% 75.29% 16.13% 13.15% 38 62.83% 69.89% 77.51% 15.33% 12.05%
30 17 76.59% 84.71% 94.56% 8.23% 3.04% 17 78.83% 86.65% 95.61% 7.23% 2.46%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel B-(ii): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1783 0.00% 0.12% 0.25% 1.24% 2.79% 1783 0.00% 0.12% 0.25% 1.24% 2.80%
2 1203 0.25% 0.38% 0.54% 2.94% 4.70% 1203 0.25% 0.38% 0.54% 2.94% 4.70%
3 979 0.54% 0.69% 0.87% 4.43% 6.46% 979 0.54% 0.69% 0.88% 4.44% 6.47%
4 757 0.88% 1.06% 1.27% 5.93% 8.16% 757 0.88% 1.07% 1.27% 5.94% 8.17%
5 603 1.27% 1.48% 1.70% 7.36% 9.73% 603 1.28% 1.48% 1.71% 7.37% 9.74%
6 480 1.71% 1.93% 2.18% 8.69% 11.21% 480 1.71% 1.94% 2.18% 8.70% 11.23%
7 452 2.18% 2.42% 2.70% 9.98% 12.65% 452 2.18% 2.43% 2.71% 9.99% 12.66%
8 372 2.70% 2.98% 3.29% 11.26% 14.07% 372 2.71% 2.98% 3.30% 11.27% 14.09%
9 395 3.30% 3.61% 3.95% 12.56% 15.48% 395 3.30% 3.62% 3.96% 12.58% 15.49%
10 299 3.96% 4.30% 4.67% 13.82% 16.81% 299 3.97% 4.31% 4.68% 13.84% 16.83%
11 251 4.68% 5.06% 5.44% 15.07% 18.08% 251 4.69% 5.07% 5.45% 15.08% 18.09%
12 254 5.45% 5.84% 6.26% 16.19% 19.27% 254 5.46% 5.85% 6.28% 16.20% 19.29%
13 221 6.27% 6.70% 7.20% 17.31% 20.46% 221 6.29% 6.71% 7.21% 17.33% 20.48%
14 203 7.20% 7.69% 8.22% 18.45% 21.61% 203 7.21% 7.70% 8.23% 18.47% 21.62%
15 174 8.24% 8.76% 9.35% 19.54% 22.71% 174 8.25% 8.78% 9.36% 19.56% 22.72%
16 160 9.38% 9.95% 10.64% 20.60% 23.78% 159 9.39% 9.96% 10.64% 20.61% 23.78%
17 184 10.67% 11.33% 12.08% 21.66% 24.80% 184 10.65% 11.34% 12.08% 21.67% 24.80%
18 145 12.08% 12.83% 13.65% 22.64% 25.72% 146 12.09% 12.84% 13.67% 22.65% 25.72%
19 156 13.68% 14.50% 15.46% 23.56% 26.56% 156 13.69% 14.51% 15.47% 23.56% 26.57%
20 111 15.47% 16.44% 17.50% 24.43% 27.30% 111 15.49% 16.45% 17.51% 24.43% 27.31%
21 138 17.55% 18.59% 19.82% 25.17% 27.91% 138 17.56% 18.60% 19.83% 25.18% 27.91%
22 96 19.88% 21.14% 22.58% 25.82% 28.36% 96 19.89% 21.15% 22.58% 25.82% 28.36%
23 113 22.69% 24.22% 25.91% 26.30% 28.58% 113 22.69% 24.22% 25.91% 26.30% 28.58%
24 90 26.05% 27.78% 29.93% 26.54% 28.47% 90 26.04% 27.77% 29.91% 26.54% 28.47%
25 94 30.13% 32.35% 34.65% 26.42% 27.92% 94 30.11% 32.33% 34.63% 26.42% 27.92%
26 83 34.70% 36.98% 40.20% 25.90% 26.81% 83 34.68% 36.96% 40.17% 25.90% 26.81%
27 75 40.39% 43.67% 48.19% 24.60% 24.54% 75 40.35% 43.63% 48.15% 24.61% 24.55%
28 74 48.93% 54.05% 60.46% 21.58% 19.94% 74 48.89% 54.01% 60.43% 21.60% 19.95%
29 39 61.25% 67.97% 76.30% 16.17% 12.65% 39 61.22% 67.95% 76.30% 16.18% 12.65%
30 16 77.28% 85.10% 94.61% 8.03% 3.02% 16 77.28% 85.11% 94.62% 8.03% 3.01%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel C-(i): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1675 0.00% 0.11% 0.24% 1.18% 2.68% 1786 0.00% 0.09% 0.19% 0.99% 2.30%
2 1174 0.24% 0.36% 0.50% 2.81% 4.50% 1206 0.19% 0.29% 0.41% 2.41% 3.92%
3 931 0.50% 0.65% 0.81% 4.25% 6.13% 997 0.41% 0.53% 0.68% 3.69% 5.50%
4 677 0.81% 0.97% 1.14% 5.57% 7.62% 804 0.68% 0.83% 1.02% 5.04% 7.11%
5 555 1.14% 1.31% 1.50% 6.80% 9.01% 685 1.02% 1.20% 1.43% 6.44% 8.75%
6 487 1.50% 1.69% 1.91% 7.99% 10.40% 582 1.43% 1.65% 1.90% 7.89% 10.38%
7 457 1.91% 2.13% 2.37% 9.23% 11.77% 481 1.91% 2.15% 2.44% 9.29% 11.96%
8 389 2.37% 2.61% 2.88% 10.43% 13.09% 434 2.44% 2.73% 3.03% 10.71% 13.46%
9 347 2.88% 3.15% 3.45% 11.63% 14.42% 335 3.03% 3.33% 3.65% 11.99% 14.86%
10 371 3.45% 3.75% 4.09% 12.83% 15.74% 261 3.65% 3.98% 4.31% 13.26% 16.15%
11 289 4.10% 4.45% 4.83% 14.07% 17.09% 257 4.31% 4.63% 4.99% 14.38% 17.36%
12 262 4.84% 5.23% 5.62% 15.31% 18.35% 221 5.00% 5.36% 5.77% 15.50% 18.57%
13 256 5.63% 6.03% 6.48% 16.45% 19.56% 203 5.77% 6.19% 6.63% 16.66% 19.76%
14 217 6.48% 6.93% 7.45% 17.59% 20.76% 174 6.64% 7.09% 7.60% 17.78% 20.93%
15 224 7.46% 7.99% 8.62% 18.77% 22.02% 160 7.62% 8.11% 8.71% 18.90% 22.11%
16 198 8.63% 9.26% 10.00% 20.01% 23.28% 188 8.73% 9.33% 10.00% 20.07% 23.28%
17 199 10.03% 10.76% 11.54% 21.24% 24.44% 145 10.01% 10.68% 11.42% 21.18% 24.35%
18 180 11.56% 12.34% 13.24% 22.34% 25.49% 160 11.47% 12.21% 13.14% 22.26% 25.44%
19 163 13.25% 14.14% 15.12% 23.38% 26.42% 115 13.22% 14.10% 15.06% 23.36% 26.39%
20 129 15.13% 16.12% 17.21% 24.29% 27.21% 127 15.14% 16.05% 17.18% 24.27% 27.20%
21 140 17.31% 18.38% 19.59% 25.11% 27.86% 95 17.26% 18.42% 19.81% 25.12% 27.91%
22 96 19.65% 20.89% 22.29% 25.76% 28.32% 109 19.92% 21.39% 23.00% 25.87% 28.40%
23 113 22.40% 23.90% 25.56% 26.27% 28.57% 80 23.03% 24.64% 26.66% 26.35% 28.59%
24 90 25.69% 27.40% 29.53% 26.53% 28.50% 79 26.76% 28.77% 30.81% 26.55% 28.40%
25 94 29.72% 31.94% 34.24% 26.44% 27.98% 84 30.93% 33.05% 35.75% 26.36% 27.73%
26 83 34.29% 36.59% 39.84% 25.96% 26.89% 60 36.27% 38.82% 41.85% 25.60% 26.40%
27 75 40.03% 43.37% 47.99% 24.67% 24.60% 52 42.13% 45.22% 50.07% 24.22% 23.91%
28 74 48.75% 53.99% 60.54% 21.60% 19.91% 65 50.29% 55.27% 61.88% 21.17% 19.34%
29 38 61.35% 67.89% 75.11% 16.21% 13.24% 38 62.78% 69.90% 77.56% 15.33% 12.02%
30 17 76.42% 84.58% 94.51% 8.30% 3.07% 17 78.89% 86.73% 95.68% 7.19% 2.42%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel C-(ii): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1785 0.00% 0.12% 0.25% 1.21% 2.75% 1785 0.00% 0.12% 0.25% 1.21% 2.76%
2 1202 0.25% 0.38% 0.53% 2.89% 4.64% 1202 0.25% 0.38% 0.53% 2.90% 4.65%
3 978 0.53% 0.68% 0.86% 4.38% 6.39% 978 0.53% 0.68% 0.86% 4.39% 6.40%
4 757 0.86% 1.05% 1.25% 5.87% 8.09% 757 0.87% 1.05% 1.26% 5.88% 8.10%
5 603 1.26% 1.46% 1.69% 7.30% 9.67% 603 1.26% 1.47% 1.69% 7.31% 9.68%
6 480 1.69% 1.91% 2.16% 8.64% 11.15% 480 1.69% 1.92% 2.16% 8.65% 11.17%
7 452 2.16% 2.40% 2.68% 9.93% 12.59% 452 2.16% 2.41% 2.69% 9.94% 12.61%
8 372 2.68% 2.96% 3.27% 11.21% 14.02% 372 2.69% 2.96% 3.28% 11.23% 14.04%
9 395 3.28% 3.59% 3.93% 12.52% 15.44% 395 3.28% 3.60% 3.94% 12.54% 15.45%
10 299 3.94% 4.28% 4.65% 13.79% 16.78% 299 3.95% 4.29% 4.66% 13.81% 16.80%
11 251 4.66% 5.05% 5.42% 15.04% 18.05% 251 4.68% 5.06% 5.44% 15.06% 18.07%
12 254 5.43% 5.82% 6.25% 16.17% 19.25% 254 5.45% 5.83% 6.26% 16.18% 19.27%
13 221 6.26% 6.69% 7.19% 17.30% 20.45% 221 6.27% 6.70% 7.20% 17.31% 20.47%
14 203 7.19% 7.69% 8.22% 18.45% 21.61% 203 7.21% 7.70% 8.23% 18.46% 21.62%
15 174 8.23% 8.76% 9.35% 19.54% 22.71% 174 8.25% 8.78% 9.37% 19.56% 22.73%
16 160 9.38% 9.95% 10.65% 20.60% 23.79% 159 9.39% 9.97% 10.65% 20.61% 23.79%
17 184 10.67% 11.35% 12.09% 21.67% 24.81% 184 10.66% 11.35% 12.10% 21.68% 24.81%
18 145 12.10% 12.85% 13.68% 22.65% 25.73% 146 12.11% 12.86% 13.69% 22.66% 25.74%
19 156 13.70% 14.53% 15.49% 23.57% 26.58% 156 13.72% 14.54% 15.51% 23.58% 26.58%
20 111 15.51% 16.48% 17.55% 24.44% 27.32% 111 15.52% 16.49% 17.56% 24.45% 27.32%
21 138 17.59% 18.64% 19.87% 25.19% 27.92% 138 17.60% 18.65% 19.88% 25.19% 27.92%
22 96 19.93% 21.20% 22.64% 25.83% 28.37% 96 19.94% 21.20% 22.64% 25.83% 28.37%
23 113 22.75% 24.28% 25.97% 26.31% 28.58% 113 22.75% 24.28% 25.97% 26.31% 28.58%
24 90 26.11% 27.83% 29.98% 26.54% 28.47% 90 26.10% 27.83% 29.96% 26.54% 28.47%
25 94 30.18% 32.39% 34.68% 26.41% 27.91% 94 30.16% 32.37% 34.65% 26.41% 27.92%
26 83 34.73% 37.00% 40.19% 25.90% 26.81% 83 34.70% 36.96% 40.15% 25.90% 26.82%
27 75 40.37% 43.62% 48.09% 24.61% 24.57% 75 40.33% 43.58% 48.04% 24.62% 24.59%
28 74 48.82% 53.88% 60.23% 21.64% 20.03% 74 48.77% 53.84% 60.19% 21.66% 20.05%
29 39 61.02% 67.71% 76.06% 16.28% 12.77% 39 60.99% 67.69% 76.06% 16.29% 12.77%
30 16 77.04% 84.94% 94.57% 8.11% 3.04% 16 77.04% 84.95% 94.58% 8.11% 3.03%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel D-(i): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1708 0.00% 0.11% 0.24% 1.18% 2.68% 1813 0.00% 0.09% 0.19% 0.97% 2.25%
2 1159 0.24% 0.36% 0.50% 2.81% 4.51% 1214 0.19% 0.28% 0.40% 2.36% 3.86%
3 939 0.50% 0.65% 0.81% 4.25% 6.15% 1010 0.40% 0.52% 0.67% 3.64% 5.44%
4 691 0.81% 0.98% 1.15% 5.60% 7.68% 804 0.67% 0.82% 1.00% 4.99% 7.04%
5 567 1.15% 1.33% 1.53% 6.87% 9.11% 669 1.00% 1.19% 1.40% 6.37% 8.67%
6 490 1.53% 1.73% 1.94% 8.10% 10.51% 587 1.41% 1.63% 1.87% 7.81% 10.29%
7 445 1.95% 2.18% 2.42% 9.35% 11.89% 475 1.88% 2.12% 2.40% 9.21% 11.86%
8 391 2.41% 2.67% 2.94% 10.56% 13.24% 426 2.41% 2.69% 2.97% 10.61% 13.32%
9 340 2.93% 3.21% 3.50% 11.76% 14.53% 321 2.98% 3.26% 3.57% 11.86% 14.69%
10 346 3.50% 3.80% 4.13% 12.91% 15.81% 255 3.58% 3.89% 4.20% 13.09% 15.95%
11 281 4.13% 4.47% 4.85% 14.11% 17.12% 254 4.21% 4.52% 4.87% 14.19% 17.15%
12 257 4.85% 5.24% 5.62% 15.33% 18.36% 221 4.88% 5.23% 5.63% 15.31% 18.37%
13 254 5.63% 6.03% 6.46% 16.45% 19.54% 203 5.64% 6.04% 6.48% 16.47% 19.57%
14 211 6.47% 6.91% 7.43% 17.57% 20.75% 174 6.49% 6.94% 7.43% 17.60% 20.75%
15 227 7.44% 7.96% 8.59% 18.74% 21.99% 160 7.46% 7.94% 8.53% 18.72% 21.93%
16 203 8.61% 9.26% 10.01% 20.00% 23.28% 188 8.56% 9.15% 9.81% 19.90% 23.12%
17 199 10.04% 10.77% 11.56% 21.25% 24.45% 145 9.82% 10.48% 11.21% 21.03% 24.21%
18 180 11.57% 12.36% 13.25% 22.35% 25.50% 160 11.26% 12.00% 12.93% 22.12% 25.31%
19 163 13.26% 14.15% 15.13% 23.38% 26.42% 115 13.00% 13.88% 14.83% 23.24% 26.29%
20 129 15.14% 16.13% 17.22% 24.30% 27.21% 127 14.91% 15.81% 16.94% 24.17% 27.12%
21 140 17.32% 18.38% 19.60% 25.11% 27.86% 95 17.01% 18.17% 19.56% 25.04% 27.85%
22 96 19.65% 20.88% 22.29% 25.76% 28.32% 109 19.67% 21.13% 22.74% 25.82% 28.38%
23 113 22.39% 23.89% 25.54% 26.27% 28.57% 80 22.78% 24.38% 26.40% 26.32% 28.59%
24 90 25.68% 27.38% 29.49% 26.53% 28.50% 79 26.50% 28.51% 30.56% 26.55% 28.42%
25 94 29.69% 31.90% 34.19% 26.45% 27.99% 84 30.68% 32.81% 35.51% 26.38% 27.77%
26 83 34.23% 36.52% 39.76% 25.97% 26.91% 60 36.04% 38.60% 41.65% 25.64% 26.45%
27 75 39.95% 43.27% 47.86% 24.69% 24.64% 52 41.93% 45.03% 49.92% 24.27% 23.96%
28 74 48.62% 53.84% 60.36% 21.66% 19.98% 65 50.14% 55.16% 61.82% 21.21% 19.37%
29 39 61.16% 67.91% 76.22% 16.20% 12.69% 38 62.72% 69.89% 77.60% 15.33% 12.00%
30 16 77.19% 84.94% 94.45% 8.11% 3.10% 17 78.94% 86.80% 95.74% 7.16% 2.39%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel D-(ii): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1786 0.00% 0.11% 0.24% 1.19% 2.71% 1786 0.00% 0.11% 0.24% 1.19% 2.72%
2 1201 0.24% 0.37% 0.52% 2.85% 4.59% 1201 0.24% 0.37% 0.52% 2.86% 4.60%
3 978 0.52% 0.67% 0.85% 4.33% 6.33% 978 0.52% 0.67% 0.85% 4.34% 6.34%
4 757 0.85% 1.03% 1.24% 5.82% 8.03% 757 0.85% 1.04% 1.24% 5.83% 8.04%
5 603 1.24% 1.45% 1.67% 7.25% 9.61% 603 1.25% 1.45% 1.67% 7.26% 9.63%
6 480 1.67% 1.89% 2.14% 8.58% 11.10% 480 1.68% 1.90% 2.14% 8.60% 11.12%
7 452 2.14% 2.38% 2.66% 9.88% 12.54% 452 2.15% 2.39% 2.67% 9.90% 12.56%
8 372 2.66% 2.94% 3.25% 11.17% 13.98% 372 2.67% 2.94% 3.26% 11.19% 14.00%
9 395 3.26% 3.57% 3.92% 12.48% 15.40% 395 3.27% 3.58% 3.93% 12.50% 15.42%
10 299 3.92% 4.26% 4.63% 13.76% 16.75% 299 3.93% 4.28% 4.65% 13.78% 16.77%
11 251 4.65% 5.03% 5.41% 15.01% 18.03% 251 4.66% 5.04% 5.42% 15.03% 18.05%
12 254 5.42% 5.81% 6.24% 16.15% 19.24% 254 5.43% 5.82% 6.25% 16.17% 19.26%
13 221 6.25% 6.68% 7.18% 17.29% 20.45% 221 6.26% 6.70% 7.20% 17.31% 20.47%
14 203 7.19% 7.68% 8.21% 18.44% 21.61% 203 7.20% 7.70% 8.23% 18.46% 21.62%
15 174 8.23% 8.76% 9.36% 19.54% 22.72% 174 8.25% 8.78% 9.37% 19.56% 22.73%
16 159 9.38% 9.96% 10.64% 20.61% 23.79% 159 9.40% 9.98% 10.66% 20.62% 23.80%
17 184 10.66% 11.35% 12.10% 21.68% 24.81% 184 10.68% 11.37% 12.12% 21.69% 24.83%
18 146 12.11% 12.87% 13.71% 22.67% 25.74% 146 12.13% 12.89% 13.73% 22.68% 25.75%
19 156 13.73% 14.56% 15.53% 23.59% 26.59% 156 13.75% 14.58% 15.55% 23.60% 26.60%
20 111 15.55% 16.53% 17.60% 24.46% 27.33% 111 15.56% 16.54% 17.61% 24.47% 27.34%
21 138 17.64% 18.69% 19.93% 25.20% 27.93% 138 17.65% 18.70% 19.94% 25.21% 27.93%
22 96 19.99% 21.26% 22.71% 25.84% 28.37% 96 20.00% 21.27% 22.71% 25.84% 28.37%
23 113 22.82% 24.35% 26.04% 26.32% 28.58% 113 22.82% 24.35% 26.04% 26.32% 28.58%
24 90 26.17% 27.90% 30.04% 26.54% 28.46% 90 26.17% 27.89% 30.02% 26.54% 28.46%
25 93 30.24% 32.42% 34.68% 26.41% 27.91% 93 30.22% 32.39% 34.65% 26.41% 27.92%
26 84 34.72% 36.99% 40.18% 25.90% 26.81% 84 34.69% 36.95% 40.13% 25.90% 26.82%
27 75 40.36% 43.57% 47.98% 24.62% 24.60% 75 40.31% 43.52% 47.93% 24.63% 24.62%
28 74 48.71% 53.71% 59.99% 21.70% 20.14% 74 48.65% 53.65% 59.94% 21.72% 20.15%
29 39 60.77% 67.44% 75.78% 16.40% 12.91% 39 60.73% 67.41% 75.78% 16.41% 12.91%
30 16 76.77% 84.76% 94.52% 8.20% 3.07% 16 76.77% 84.77% 94.53% 8.20% 3.06%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel E-(i): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

  

Alternative #1 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1729 0.00% 0.11% 0.24% 1.18% 2.68% 1820 0.00% 0.08% 0.18% 0.93% 2.19%
2 1151 0.24% 0.36% 0.51% 2.81% 4.52% 1213 0.18% 0.27% 0.39% 2.29% 3.77%
3 952 0.51% 0.65% 0.82% 4.26% 6.17% 1014 0.39% 0.50% 0.65% 3.55% 5.32%
4 687 0.81% 0.98% 1.16% 5.63% 7.72% 798 0.65% 0.79% 0.97% 4.88% 6.89%
5 578 1.16% 1.35% 1.54% 6.92% 9.18% 667 0.97% 1.15% 1.36% 6.23% 8.50%
6 489 1.54% 1.75% 1.97% 8.17% 10.59% 585 1.36% 1.58% 1.82% 7.65% 10.10%
7 438 1.98% 2.20% 2.44% 9.42% 11.97% 475 1.82% 2.06% 2.33% 9.04% 11.66%
8 373 2.44% 2.68% 2.95% 10.60% 13.27% 426 2.34% 2.61% 2.89% 10.43% 13.12%
9 335 2.95% 3.22% 3.51% 11.77% 14.55% 323 2.89% 3.17% 3.48% 11.68% 14.50%
10 344 3.51% 3.80% 4.13% 12.92% 15.82% 253 3.49% 3.79% 4.09% 12.91% 15.75%
11 281 4.14% 4.47% 4.85% 14.11% 17.12% 254 4.10% 4.41% 4.75% 14.00% 16.94%
12 257 4.86% 5.24% 5.63% 15.34% 18.37% 221 4.76% 5.10% 5.50% 15.12% 18.17%
13 254 5.64% 6.03% 6.47% 16.46% 19.55% 203 5.50% 5.90% 6.34% 16.28% 19.37%
14 211 6.48% 6.92% 7.44% 17.58% 20.76% 174 6.35% 6.79% 7.27% 17.42% 20.56%
15 227 7.45% 7.97% 8.60% 18.75% 22.00% 160 7.30% 7.78% 8.36% 18.55% 21.76%
16 203 8.62% 9.27% 10.03% 20.01% 23.29% 188 8.38% 8.97% 9.62% 19.74% 22.95%
17 199 10.05% 10.79% 11.57% 21.26% 24.46% 145 9.63% 10.29% 11.01% 20.88% 24.06%
18 180 11.58% 12.37% 13.26% 22.36% 25.50% 160 11.06% 11.79% 12.71% 21.98% 25.19%
19 163 13.27% 14.16% 15.14% 23.39% 26.43% 115 12.78% 13.65% 14.60% 23.12% 26.18%
20 129 15.15% 16.13% 17.22% 24.30% 27.22% 127 14.68% 15.57% 16.69% 24.06% 27.04%
21 140 17.32% 18.38% 19.59% 25.11% 27.86% 95 16.77% 17.92% 19.30% 24.96% 27.79%
22 96 19.65% 20.88% 22.27% 25.76% 28.32% 109 19.41% 20.87% 22.48% 25.76% 28.35%
23 113 22.38% 23.87% 25.52% 26.26% 28.57% 80 22.51% 24.11% 26.13% 26.29% 28.58%
24 90 25.65% 27.34% 29.45% 26.53% 28.50% 79 26.23% 28.24% 30.29% 26.55% 28.44%
25 94 29.64% 31.83% 34.11% 26.45% 28.00% 84 30.41% 32.54% 35.26% 26.40% 27.82%
26 83 34.16% 36.43% 39.65% 25.98% 26.94% 60 35.78% 38.35% 41.41% 25.68% 26.51%
27 75 39.84% 43.14% 47.71% 24.72% 24.69% 52 41.69% 44.81% 49.73% 24.32% 24.03%
28 74 48.46% 53.65% 60.14% 21.72% 20.07% 65 49.95% 55.00% 61.71% 21.26% 19.41%
29 39 60.95% 67.68% 75.99% 16.30% 12.81% 38 62.62% 69.84% 77.61% 15.35% 12.00%
30 16 76.96% 84.77% 94.37% 8.20% 3.15% 17 78.95% 86.83% 95.79% 7.14% 2.36%
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Table 5: Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel E-(ii): Parameter permutations with ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

 

Alternative #1 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1757 0.00% 0.11% 0.23% 1.15% 2.62% 1757 0.00% 0.11% 0.23% 1.15% 2.63%
2 1169 0.23% 0.35% 0.49% 2.75% 4.44% 1169 0.23% 0.35% 0.50% 2.76% 4.45%
3 969 0.49% 0.64% 0.80% 4.19% 6.12% 969 0.50% 0.64% 0.81% 4.20% 6.13%
4 711 0.81% 0.97% 1.16% 5.59% 7.69% 711 0.81% 0.98% 1.16% 5.61% 7.71%
5 575 1.16% 1.34% 1.54% 6.90% 9.17% 575 1.16% 1.35% 1.55% 6.92% 9.19%
6 481 1.54% 1.75% 1.97% 8.16% 10.58% 481 1.55% 1.75% 1.97% 8.18% 10.60%
7 421 1.97% 2.19% 2.42% 9.38% 11.91% 421 1.97% 2.20% 2.43% 9.40% 11.94%
8 364 2.43% 2.66% 2.92% 10.54% 13.19% 364 2.43% 2.67% 2.92% 10.56% 13.21%
9 306 2.92% 3.17% 3.43% 11.68% 14.38% 306 2.93% 3.18% 3.44% 11.70% 14.40%
10 312 3.44% 3.69% 3.99% 12.72% 15.55% 312 3.45% 3.71% 4.00% 12.74% 15.57%
11 262 4.00% 4.30% 4.66% 13.83% 16.79% 262 4.01% 4.32% 4.67% 13.85% 16.82%
12 249 4.66% 5.03% 5.41% 15.01% 18.03% 249 4.68% 5.04% 5.43% 15.03% 18.05%
13 252 5.42% 5.80% 6.23% 16.14% 19.23% 252 5.43% 5.82% 6.25% 16.16% 19.25%
14 221 6.24% 6.67% 7.17% 17.28% 20.44% 221 6.26% 6.69% 7.19% 17.30% 20.46%
15 203 7.18% 7.68% 8.21% 18.44% 21.61% 203 7.20% 7.70% 8.23% 18.46% 21.63%
16 174 8.23% 8.77% 9.36% 19.55% 22.72% 174 8.25% 8.79% 9.38% 19.57% 22.74%
17 160 9.39% 9.97% 10.67% 20.62% 23.81% 160 9.41% 9.99% 10.69% 20.64% 23.83%
18 186 10.70% 11.39% 12.15% 21.70% 24.84% 186 10.72% 11.41% 12.17% 21.72% 24.86%
19 147 12.17% 12.93% 13.78% 22.71% 25.78% 147 12.19% 12.95% 13.80% 22.72% 25.79%
20 160 13.83% 14.67% 15.71% 23.64% 26.67% 160 13.86% 14.69% 15.73% 23.65% 26.67%
21 123 15.79% 16.83% 17.96% 24.58% 27.44% 123 15.81% 16.85% 17.98% 24.58% 27.45%
22 144 18.01% 19.17% 20.78% 25.34% 28.10% 144 18.03% 19.18% 20.79% 25.35% 28.10%
23 120 20.82% 22.44% 24.33% 26.06% 28.51% 120 20.83% 22.45% 24.33% 26.06% 28.51%
24 131 24.38% 26.31% 28.89% 26.48% 28.53% 131 24.39% 26.30% 28.88% 26.48% 28.53%
25 100 28.96% 31.55% 33.93% 26.47% 28.03% 100 28.95% 31.52% 33.89% 26.47% 28.03%
26 96 34.14% 36.49% 39.83% 25.97% 26.89% 96 34.11% 36.45% 39.78% 25.98% 26.91%
27 78 40.03% 43.37% 47.86% 24.67% 24.65% 78 39.98% 43.31% 47.79% 24.68% 24.67%
28 74 48.57% 53.50% 59.70% 21.77% 20.25% 74 48.50% 53.44% 59.65% 21.79% 20.27%
29 39 60.48% 67.11% 75.47% 16.54% 13.07% 39 60.43% 67.09% 75.47% 16.55% 13.07%
30 16 76.46% 84.55% 94.45% 8.31% 3.10% 16 76.46% 84.56% 94.47% 8.31% 3.10%
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Table 6: Alternative #1 value-at-risk and conditional value-at-risk capital requirements 

This table lists the asset-equivalent weighted-average value-at-risk and conditional value-at-risk bank capital requirements or equity 

capital ratios for the alternative permutations of TTC adjustments (TTC0, TTC1, TTC2, and TTC3) and systematic risk correlation 

values (from 40% to 60% in increments of 5%). Across the value-at-risk and conditional value-at-risk panels, the TTC1 adjustments 

consistently introduce non-trivial downward biases in the asset-equivalent weighted-average equity capital ratios relative to the TTC0 

brute-force adjustments and the TTC2/TTC3 higher-order Taylor-series approximations. The more accurate TTC0, TTC2, and TTC3 

asset-equivalent weighted-average value-at-risk and conditional value-at-risk bank equity capital ratios land in the intermediate range 

of 9% to 12% across the entire spectrum of systematic risk correlation values. The quantitative results that favor the recent proposal 

for substantially heighted bank capital requirements indicates first-order discrepancies between these alternative equity capital ratios 

and the newly introduced Basel equity capital ratio of 3% to 6% when the prudent econometrician raises the asset correlation value to 

35% to account for default contagion in times of severe financial stress. The evidence resonates with the central thesis that the typical 

bank should hold a much larger capital cushion to absorb extreme losses in a financial downturn.  

 

 

 
 

 

Alternative equity capital φ=40% φ=45% φ=50% φ=55% φ=60%
Value-at-risk capital 
TTC0 9.77% 9.75% 9.74% 9.73% 9.72%

TTC1 8.97% 8.85% 8.73% 8.61% 8.50%

TTC2 9.72% 9.69% 9.66% 9.63% 9.61%

TTC3 9.73% 9.70% 9.67% 9.64% 9.62%

Conditional value-at-risk capital
TTC0 11.92% 11.90% 11.92% 11.91% 11.90%

TTC1 11.11% 10.97% 10.83% 10.69% 10.56%

TTC2 11.92% 11.91% 11.87% 11.84% 11.77%

TTC3 11.92% 11.92% 11.88% 11.85% 11.78%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel A-(i): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1019 0.01% 0.15% 0.27% 1.47% 2.97% 1141 0.00% 0.13% 0.24% 1.30% 2.67%
2 1000 0.27% 0.40% 0.54% 3.02% 4.72% 1085 0.24% 0.34% 0.47% 2.72% 4.31%
3 853 0.54% 0.68% 0.84% 4.40% 6.29% 916 0.47% 0.60% 0.74% 4.02% 5.79%
4 774 0.84% 1.00% 1.16% 5.68% 7.73% 823 0.74% 0.88% 1.04% 5.21% 7.20%
5 637 1.17% 1.34% 1.52% 6.88% 9.09% 692 1.04% 1.21% 1.39% 6.45% 8.62%
6 541 1.52% 1.70% 1.91% 8.04% 10.41% 590 1.39% 1.58% 1.78% 7.66% 9.97%
7 520 1.91% 2.12% 2.35% 9.20% 11.72% 500 1.78% 1.98% 2.20% 8.82% 11.28%
8 458 2.35% 2.59% 2.84% 10.38% 13.01% 462 2.20% 2.42% 2.66% 9.97% 12.54%
9 446 2.85% 3.11% 3.39% 11.55% 14.30% 396 2.66% 2.90% 3.17% 11.08% 13.78%
10 369 3.40% 3.68% 4.00% 12.70% 15.56% 401 3.17% 3.45% 3.73% 12.24% 15.02%
11 395 4.00% 4.32% 4.66% 13.86% 16.79% 315 3.73% 4.02% 4.33% 13.33% 16.20%
12 309 4.66% 5.00% 5.37% 14.97% 17.96% 255 4.34% 4.65% 4.96% 14.41% 17.30%
13 253 5.37% 5.74% 6.09% 16.05% 19.04% 260 4.96% 5.27% 5.62% 15.37% 18.34%
14 259 6.10% 6.46% 6.86% 17.01% 20.06% 230 5.62% 5.97% 6.39% 16.37% 19.44%
15 231 6.87% 7.28% 7.75% 17.99% 21.11% 239 6.40% 6.83% 7.33% 17.47% 20.63%
16 236 7.77% 8.26% 8.82% 19.05% 22.21% 204 7.34% 7.84% 8.42% 18.62% 21.82%
17 208 8.83% 9.41% 10.06% 20.13% 23.32% 209 8.44% 9.03% 9.65% 19.80% 22.98%
18 199 10.08% 10.71% 11.37% 21.21% 24.32% 185 9.67% 10.30% 11.00% 20.88% 24.06%
19 180 11.38% 12.04% 12.77% 22.15% 25.22% 181 11.05% 11.79% 12.72% 21.98% 25.19%
20 164 12.79% 13.52% 14.33% 23.04% 26.06% 159 12.76% 13.72% 14.72% 23.15% 26.24%
21 131 14.34% 15.15% 16.12% 23.87% 26.83% 139 14.74% 15.74% 17.05% 24.14% 27.16%
22 159 16.15% 17.13% 18.43% 24.69% 27.58% 125 17.14% 18.50% 19.84% 25.15% 27.91%
23 125 18.47% 19.77% 21.27% 25.50% 28.18% 92 19.86% 21.19% 22.81% 25.83% 28.38%
24 131 21.31% 22.81% 24.82% 26.12% 28.54% 85 22.94% 24.63% 26.31% 26.35% 28.59%
25 100 24.88% 26.92% 28.83% 26.51% 28.54% 84 26.40% 28.03% 30.10% 26.54% 28.46%
26 99 29.00% 31.00% 33.94% 26.50% 28.03% 71 30.50% 32.93% 35.80% 26.37% 27.73%
27 79 34.09% 37.02% 41.48% 25.89% 26.49% 53 36.07% 38.99% 42.71% 25.57% 26.17%
28 73 41.61% 46.12% 52.49% 23.98% 23.06% 56 42.97% 46.89% 52.81% 23.78% 22.94%
29 38 53.43% 59.24% 68.01% 19.72% 16.62% 37 53.85% 60.02% 69.19% 19.43% 16.08%
30 14 69.88% 77.64% 88.75% 11.74% 6.21% 15 69.84% 79.04% 90.50% 11.06% 5.26%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel A-(ii): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1021 0.00% 0.15% 0.27% 1.44% 2.91% 1021 0.01% 0.15% 0.27% 1.44% 2.92%
2 999 0.27% 0.39% 0.53% 2.96% 4.64% 999 0.27% 0.39% 0.53% 2.97% 4.65%
3 852 0.53% 0.67% 0.82% 4.32% 6.18% 852 0.53% 0.67% 0.82% 4.33% 6.19%
4 774 0.82% 0.97% 1.14% 5.58% 7.61% 774 0.82% 0.97% 1.14% 5.59% 7.62%
5 637 1.14% 1.30% 1.48% 6.77% 8.96% 637 1.14% 1.31% 1.49% 6.78% 8.97%
6 544 1.49% 1.67% 1.87% 7.93% 10.28% 544 1.49% 1.67% 1.87% 7.94% 10.29%
7 522 1.87% 2.08% 2.31% 9.08% 11.59% 522 1.88% 2.08% 2.31% 9.10% 11.61%
8 459 2.31% 2.54% 2.80% 10.27% 12.91% 459 2.32% 2.55% 2.81% 10.28% 12.92%
9 447 2.80% 3.06% 3.34% 11.44% 14.19% 447 2.81% 3.07% 3.35% 11.46% 14.21%
10 371 3.35% 3.63% 3.95% 12.61% 15.47% 371 3.36% 3.64% 3.96% 12.62% 15.48%
11 394 3.95% 4.27% 4.61% 13.77% 16.70% 394 3.96% 4.28% 4.62% 13.79% 16.72%
12 303 4.61% 4.95% 5.31% 14.89% 17.87% 303 4.62% 4.96% 5.32% 14.90% 17.89%
13 253 5.32% 5.69% 6.05% 15.98% 18.97% 253 5.33% 5.70% 6.06% 15.99% 18.99%
14 260 6.05% 6.42% 6.83% 16.96% 20.01% 260 6.06% 6.43% 6.84% 16.97% 20.03%
15 230 6.83% 7.24% 7.73% 17.95% 21.08% 230 6.85% 7.25% 7.74% 17.97% 21.10%
16 238 7.75% 8.24% 8.82% 19.03% 22.21% 238 7.76% 8.25% 8.83% 19.04% 22.23%
17 204 8.82% 9.41% 10.05% 20.13% 23.32% 204 8.84% 9.42% 10.07% 20.14% 23.33%
18 199 10.08% 10.73% 11.39% 21.22% 24.34% 199 10.09% 10.74% 11.41% 21.23% 24.35%
19 180 11.40% 12.08% 12.83% 22.17% 25.26% 180 11.42% 12.09% 12.84% 22.18% 25.27%
20 164 12.84% 13.60% 14.42% 23.09% 26.10% 164 12.86% 13.61% 14.43% 23.09% 26.11%
21 131 14.43% 15.26% 16.26% 23.93% 26.88% 131 14.45% 15.28% 16.27% 23.93% 26.88%
22 159 16.29% 17.29% 18.63% 24.75% 27.63% 158 16.30% 17.29% 18.59% 24.75% 27.62%
23 125 18.67% 19.99% 21.53% 25.56% 28.22% 125 18.63% 19.97% 21.50% 25.55% 28.21%
24 131 21.57% 23.09% 25.14% 26.16% 28.56% 132 21.53% 23.08% 25.13% 26.16% 28.56%
25 100 25.19% 27.26% 29.18% 26.52% 28.52% 100 25.19% 27.25% 29.17% 26.52% 28.52%
26 99 29.35% 31.36% 34.29% 26.48% 27.97% 99 29.34% 31.34% 34.27% 26.48% 27.98%
27 79 34.44% 37.33% 41.72% 25.85% 26.43% 79 34.42% 37.31% 41.68% 25.85% 26.44%
28 73 41.84% 46.24% 52.45% 23.95% 23.07% 73 41.81% 46.21% 52.41% 23.96% 23.09%
29 38 53.36% 59.05% 67.69% 19.80% 16.77% 38 53.32% 59.01% 67.67% 19.81% 16.78%
30 14 69.55% 77.40% 88.71% 11.85% 6.23% 14 69.53% 77.40% 88.73% 11.85% 6.22%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel B-(i): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1174 0.00% 0.12% 0.23% 1.22% 2.59% 1654 0.00% 0.12% 0.24% 1.26% 2.75%
2 1041 0.23% 0.34% 0.46% 2.66% 4.26% 1223 0.25% 0.37% 0.51% 2.85% 4.54%
3 845 0.46% 0.59% 0.74% 3.99% 5.79% 1019 0.51% 0.65% 0.82% 4.26% 6.18%
4 821 0.74% 0.88% 1.06% 5.24% 7.27% 761 0.82% 0.98% 1.16% 5.62% 7.72%
5 625 1.06% 1.23% 1.41% 6.53% 8.68% 623 1.16% 1.34% 1.54% 6.91% 9.17%
6 516 1.41% 1.59% 1.78% 7.69% 9.98% 514 1.54% 1.74% 1.95% 8.15% 10.54%
7 456 1.78% 1.97% 2.19% 8.80% 11.24% 462 1.96% 2.17% 2.41% 9.34% 11.87%
8 426 2.19% 2.41% 2.65% 9.94% 12.51% 378 2.41% 2.64% 2.91% 10.50% 13.18%
9 391 2.65% 2.88% 3.14% 11.05% 13.73% 419 2.91% 3.19% 3.50% 11.71% 14.52%
10 340 3.15% 3.41% 3.71% 12.16% 14.99% 319 3.50% 3.81% 4.16% 12.94% 15.88%
11 389 3.72% 4.02% 4.36% 13.33% 16.26% 296 4.17% 4.52% 4.88% 14.20% 17.17%
12 299 4.37% 4.71% 5.07% 14.51% 17.49% 266 4.88% 5.25% 5.68% 15.34% 18.44%
13 253 5.09% 5.46% 5.84% 15.66% 18.67% 255 5.69% 6.12% 6.60% 16.57% 19.72%
14 260 5.84% 6.22% 6.64% 16.70% 19.78% 212 6.62% 7.12% 7.65% 17.81% 20.99%
15 230 6.65% 7.08% 7.59% 17.77% 20.93% 181 7.67% 8.20% 8.80% 18.99% 22.19%
16 239 7.61% 8.13% 8.75% 18.92% 22.14% 189 8.82% 9.40% 10.02% 20.13% 23.29%
17 203 8.75% 9.37% 10.05% 20.10% 23.32% 148 10.03% 10.65% 11.34% 21.16% 24.30%
18 200 10.08% 10.77% 11.50% 21.25% 24.41% 160 11.38% 12.06% 12.91% 22.16% 25.30%
19 180 11.51% 12.23% 13.05% 22.27% 25.38% 115 12.97% 13.77% 14.63% 23.18% 26.20%
20 165 13.06% 13.88% 14.77% 23.24% 26.26% 127 14.70% 15.51% 16.52% 24.03% 26.97%
21 129 14.79% 15.68% 16.75% 24.11% 27.06% 95 16.59% 17.61% 18.85% 24.86% 27.68%
22 159 16.79% 17.88% 19.35% 24.95% 27.80% 109 18.95% 20.24% 21.66% 25.62% 28.24%
23 125 19.39% 20.84% 22.54% 25.76% 28.35% 80 21.69% 23.09% 24.86% 26.16% 28.54%
24 131 22.59% 24.28% 26.55% 26.31% 28.59% 79 24.95% 26.71% 28.50% 26.50% 28.55%
25 100 26.62% 28.93% 31.07% 26.55% 28.37% 84 28.61% 30.47% 32.84% 26.52% 28.18%
26 96 31.27% 33.43% 36.53% 26.33% 27.59% 71 33.30% 36.07% 39.33% 26.03% 27.01%
27 78 36.72% 39.90% 44.21% 25.41% 25.75% 53 39.64% 42.92% 47.09% 24.77% 24.89%
28 74 44.90% 49.75% 55.88% 22.96% 21.78% 56 47.38% 51.68% 58.09% 22.36% 20.91%
29 39 56.66% 63.24% 71.56% 18.16% 14.96% 36 59.19% 65.32% 73.72% 17.30% 13.92%
30 16 72.55% 81.02% 92.00% 10.09% 4.45% 16 74.76% 83.16% 93.48% 9.02% 3.64%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel B-(ii): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1181 0.00% 0.11% 0.22% 1.19% 2.54% 1181 0.00% 0.11% 0.22% 1.19% 2.54%
2 1039 0.22% 0.33% 0.45% 2.61% 4.18% 1039 0.22% 0.33% 0.45% 2.61% 4.18%
3 848 0.45% 0.58% 0.72% 3.91% 5.68% 848 0.45% 0.58% 0.72% 3.92% 5.69%
4 818 0.72% 0.86% 1.03% 5.15% 7.15% 818 0.72% 0.86% 1.03% 5.15% 7.16%
5 621 1.03% 1.20% 1.37% 6.41% 8.55% 621 1.03% 1.20% 1.38% 6.42% 8.56%
6 516 1.37% 1.55% 1.74% 7.57% 9.84% 516 1.38% 1.55% 1.74% 7.58% 9.85%
7 459 1.74% 1.92% 2.14% 8.67% 11.11% 458 1.74% 1.93% 2.14% 8.68% 11.12%
8 426 2.14% 2.36% 2.59% 9.81% 12.37% 426 2.15% 2.36% 2.60% 9.83% 12.38%
9 394 2.59% 2.83% 3.09% 10.93% 13.61% 394 2.60% 2.83% 3.09% 10.94% 13.61%
10 345 3.09% 3.36% 3.66% 12.06% 14.88% 337 3.10% 3.36% 3.66% 12.06% 14.87%
11 380 3.66% 3.97% 4.30% 13.23% 16.14% 387 3.66% 3.97% 4.31% 13.23% 16.15%
12 297 4.31% 4.64% 5.02% 14.40% 17.40% 298 4.31% 4.65% 5.01% 14.41% 17.40%
13 253 5.03% 5.40% 5.78% 15.56% 18.58% 253 5.03% 5.40% 5.78% 15.57% 18.59%
14 259 5.78% 6.16% 6.59% 16.62% 19.70% 260 5.79% 6.17% 6.60% 16.63% 19.72%
15 230 6.59% 7.03% 7.55% 17.70% 20.87% 230 6.61% 7.04% 7.56% 17.72% 20.89%
16 239 7.56% 8.09% 8.72% 18.88% 22.12% 239 7.58% 8.11% 8.73% 18.89% 22.13%
17 203 8.73% 9.35% 10.05% 20.08% 23.32% 203 8.74% 9.37% 10.07% 20.10% 23.33%
18 200 10.08% 10.79% 11.53% 21.26% 24.43% 200 10.09% 10.80% 11.54% 21.28% 24.44%
19 180 11.54% 12.28% 13.12% 22.30% 25.42% 180 11.56% 12.29% 13.13% 22.31% 25.43%
20 165 13.13% 13.97% 14.89% 23.29% 26.32% 165 13.14% 13.98% 14.90% 23.30% 26.32%
21 129 14.90% 15.83% 16.92% 24.17% 27.12% 129 14.92% 15.84% 16.93% 24.18% 27.12%
22 159 16.96% 18.08% 19.59% 25.01% 27.86% 159 16.97% 18.09% 19.59% 25.02% 27.86%
23 125 19.63% 21.12% 22.86% 25.81% 28.39% 125 19.64% 21.12% 22.86% 25.81% 28.39%
24 131 22.90% 24.62% 26.93% 26.35% 28.59% 131 22.90% 24.62% 26.92% 26.35% 28.59%
25 100 26.99% 29.32% 31.47% 26.54% 28.33% 100 26.99% 29.31% 31.46% 26.55% 28.34%
26 96 31.67% 33.82% 36.89% 26.29% 27.52% 96 31.66% 33.80% 36.87% 26.29% 27.53%
27 78 37.08% 40.19% 44.41% 25.35% 25.70% 78 37.05% 40.16% 44.37% 25.36% 25.71%
28 74 45.08% 49.78% 55.73% 22.95% 21.84% 74 45.04% 49.74% 55.69% 22.96% 21.86%
29 39 56.48% 62.94% 71.19% 18.28% 15.13% 39 56.44% 62.91% 71.18% 18.29% 15.14%
30 16 72.19% 80.81% 92.02% 10.19% 4.44% 16 72.19% 80.81% 92.04% 10.19% 4.43%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel C-(i): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1675 0.00% 0.11% 0.24% 1.18% 2.68% 1786 0.00% 0.09% 0.19% 0.99% 2.30%
2 1174 0.24% 0.36% 0.50% 2.81% 4.50% 1206 0.19% 0.29% 0.41% 2.41% 3.92%
3 931 0.50% 0.65% 0.81% 4.25% 6.13% 997 0.41% 0.53% 0.68% 3.69% 5.50%
4 677 0.81% 0.97% 1.14% 5.57% 7.62% 804 0.68% 0.83% 1.02% 5.04% 7.11%
5 555 1.14% 1.31% 1.50% 6.80% 9.01% 685 1.02% 1.20% 1.43% 6.44% 8.75%
6 487 1.50% 1.69% 1.91% 7.99% 10.40% 582 1.43% 1.65% 1.90% 7.89% 10.38%
7 457 1.91% 2.13% 2.37% 9.23% 11.77% 481 1.91% 2.15% 2.44% 9.29% 11.96%
8 389 2.37% 2.61% 2.88% 10.43% 13.09% 434 2.44% 2.73% 3.03% 10.71% 13.46%
9 347 2.88% 3.15% 3.45% 11.63% 14.42% 335 3.03% 3.33% 3.65% 11.99% 14.86%
10 371 3.45% 3.75% 4.09% 12.83% 15.74% 261 3.65% 3.98% 4.31% 13.26% 16.15%
11 289 4.10% 4.45% 4.83% 14.07% 17.09% 257 4.31% 4.63% 4.99% 14.38% 17.36%
12 262 4.84% 5.23% 5.62% 15.31% 18.35% 221 5.00% 5.36% 5.77% 15.50% 18.57%
13 256 5.63% 6.03% 6.48% 16.45% 19.56% 203 5.77% 6.19% 6.63% 16.66% 19.76%
14 217 6.48% 6.93% 7.45% 17.59% 20.76% 174 6.64% 7.09% 7.60% 17.78% 20.93%
15 224 7.46% 7.99% 8.62% 18.77% 22.02% 160 7.62% 8.11% 8.71% 18.90% 22.11%
16 198 8.63% 9.26% 10.00% 20.01% 23.28% 188 8.73% 9.33% 10.00% 20.07% 23.28%
17 199 10.03% 10.76% 11.54% 21.24% 24.44% 145 10.01% 10.68% 11.42% 21.18% 24.35%
18 180 11.56% 12.34% 13.24% 22.34% 25.49% 160 11.47% 12.21% 13.14% 22.26% 25.44%
19 163 13.25% 14.14% 15.12% 23.38% 26.42% 115 13.22% 14.10% 15.06% 23.36% 26.39%
20 129 15.13% 16.12% 17.21% 24.29% 27.21% 127 15.14% 16.05% 17.18% 24.27% 27.20%
21 140 17.31% 18.38% 19.59% 25.11% 27.86% 95 17.26% 18.42% 19.81% 25.12% 27.91%
22 96 19.65% 20.89% 22.29% 25.76% 28.32% 109 19.92% 21.39% 23.00% 25.87% 28.40%
23 113 22.40% 23.90% 25.56% 26.27% 28.57% 80 23.03% 24.64% 26.66% 26.35% 28.59%
24 90 25.69% 27.40% 29.53% 26.53% 28.50% 79 26.76% 28.77% 30.81% 26.55% 28.40%
25 94 29.72% 31.94% 34.24% 26.44% 27.98% 84 30.93% 33.05% 35.75% 26.36% 27.73%
26 83 34.29% 36.59% 39.84% 25.96% 26.89% 60 36.27% 38.82% 41.85% 25.60% 26.40%
27 75 40.03% 43.37% 47.99% 24.67% 24.60% 52 42.13% 45.22% 50.07% 24.22% 23.91%
28 74 48.75% 53.99% 60.54% 21.60% 19.91% 65 50.29% 55.27% 61.88% 21.17% 19.34%
29 38 61.35% 67.89% 75.11% 16.21% 13.24% 38 62.78% 69.90% 77.56% 15.33% 12.02%
30 17 76.42% 84.58% 94.51% 8.30% 3.07% 17 78.89% 86.73% 95.68% 7.19% 2.42%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel C-(ii): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1785 0.00% 0.12% 0.25% 1.21% 2.75% 1785 0.00% 0.12% 0.25% 1.21% 2.76%
2 1202 0.25% 0.38% 0.53% 2.89% 4.64% 1202 0.25% 0.38% 0.53% 2.90% 4.65%
3 978 0.53% 0.68% 0.86% 4.38% 6.39% 978 0.53% 0.68% 0.86% 4.39% 6.40%
4 757 0.86% 1.05% 1.25% 5.87% 8.09% 757 0.87% 1.05% 1.26% 5.88% 8.10%
5 603 1.26% 1.46% 1.69% 7.30% 9.67% 603 1.26% 1.47% 1.69% 7.31% 9.68%
6 480 1.69% 1.91% 2.16% 8.64% 11.15% 480 1.69% 1.92% 2.16% 8.65% 11.17%
7 452 2.16% 2.40% 2.68% 9.93% 12.59% 452 2.16% 2.41% 2.69% 9.94% 12.61%
8 372 2.68% 2.96% 3.27% 11.21% 14.02% 372 2.69% 2.96% 3.28% 11.23% 14.04%
9 395 3.28% 3.59% 3.93% 12.52% 15.44% 395 3.28% 3.60% 3.94% 12.54% 15.45%
10 299 3.94% 4.28% 4.65% 13.79% 16.78% 299 3.95% 4.29% 4.66% 13.81% 16.80%
11 251 4.66% 5.05% 5.42% 15.04% 18.05% 251 4.68% 5.06% 5.44% 15.06% 18.07%
12 254 5.43% 5.82% 6.25% 16.17% 19.25% 254 5.45% 5.83% 6.26% 16.18% 19.27%
13 221 6.26% 6.69% 7.19% 17.30% 20.45% 221 6.27% 6.70% 7.20% 17.31% 20.47%
14 203 7.19% 7.69% 8.22% 18.45% 21.61% 203 7.21% 7.70% 8.23% 18.46% 21.62%
15 174 8.23% 8.76% 9.35% 19.54% 22.71% 174 8.25% 8.78% 9.37% 19.56% 22.73%
16 160 9.38% 9.95% 10.65% 20.60% 23.79% 159 9.39% 9.97% 10.65% 20.61% 23.79%
17 184 10.67% 11.35% 12.09% 21.67% 24.81% 184 10.66% 11.35% 12.10% 21.68% 24.81%
18 145 12.10% 12.85% 13.68% 22.65% 25.73% 146 12.11% 12.86% 13.69% 22.66% 25.74%
19 156 13.70% 14.53% 15.49% 23.57% 26.58% 156 13.72% 14.54% 15.51% 23.58% 26.58%
20 111 15.51% 16.48% 17.55% 24.44% 27.32% 111 15.52% 16.49% 17.56% 24.45% 27.32%
21 138 17.59% 18.64% 19.87% 25.19% 27.92% 138 17.60% 18.65% 19.88% 25.19% 27.92%
22 96 19.93% 21.20% 22.64% 25.83% 28.37% 96 19.94% 21.20% 22.64% 25.83% 28.37%
23 113 22.75% 24.28% 25.97% 26.31% 28.58% 113 22.75% 24.28% 25.97% 26.31% 28.58%
24 90 26.11% 27.83% 29.98% 26.54% 28.47% 90 26.10% 27.83% 29.96% 26.54% 28.47%
25 94 30.18% 32.39% 34.68% 26.41% 27.91% 94 30.16% 32.37% 34.65% 26.41% 27.92%
26 83 34.73% 37.00% 40.19% 25.90% 26.81% 83 34.70% 36.96% 40.15% 25.90% 26.82%
27 75 40.37% 43.62% 48.09% 24.61% 24.57% 75 40.33% 43.58% 48.04% 24.62% 24.59%
28 74 48.82% 53.88% 60.23% 21.64% 20.03% 74 48.77% 53.84% 60.19% 21.66% 20.05%
29 39 61.02% 67.71% 76.06% 16.28% 12.77% 39 60.99% 67.69% 76.06% 16.29% 12.77%
30 16 77.04% 84.94% 94.57% 8.11% 3.04% 16 77.04% 84.95% 94.58% 8.11% 3.03%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel D-(i): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1841 0.00% 0.09% 0.19% 0.95% 2.31% 2226 0.00% 0.08% 0.19% 0.90% 2.26%
2 1178 0.19% 0.30% 0.43% 2.45% 4.02% 1359 0.19% 0.29% 0.42% 2.42% 3.98%
3 956 0.43% 0.55% 0.72% 3.81% 5.69% 922 0.42% 0.55% 0.70% 3.77% 5.58%
4 756 0.72% 0.88% 1.07% 5.24% 7.35% 692 0.70% 0.85% 1.02% 5.09% 7.10%
5 610 1.08% 1.27% 1.48% 6.66% 8.96% 561 1.02% 1.19% 1.38% 6.38% 8.58%
6 487 1.49% 1.70% 1.93% 8.03% 10.48% 487 1.38% 1.58% 1.79% 7.66% 10.00%
7 437 1.94% 2.17% 2.43% 9.33% 11.93% 382 1.79% 2.00% 2.25% 8.89% 11.42%
8 365 2.43% 2.70% 3.00% 10.63% 13.40% 396 2.25% 2.49% 2.76% 10.15% 12.81%
9 395 3.01% 3.32% 3.66% 11.97% 14.87% 299 2.76% 3.03% 3.34% 11.38% 14.17%
10 299 3.66% 4.01% 4.39% 13.30% 16.30% 260 3.35% 3.66% 3.97% 12.65% 15.52%
11 252 4.40% 4.78% 5.17% 14.61% 17.64% 249 3.98% 4.30% 4.65% 13.82% 16.78%
12 252 5.17% 5.56% 6.00% 15.80% 18.90% 219 4.66% 5.02% 5.44% 14.99% 18.07%
13 221 6.01% 6.45% 6.95% 16.99% 20.17% 203 5.45% 5.87% 6.33% 16.23% 19.37%
14 203 6.96% 7.47% 8.02% 18.21% 21.39% 171 6.34% 6.80% 7.32% 17.44% 20.61%
15 174 8.03% 8.58% 9.19% 19.37% 22.57% 160 7.34% 7.87% 8.50% 18.64% 21.90%
16 160 9.22% 9.82% 10.54% 20.49% 23.71% 189 8.52% 9.17% 9.89% 19.92% 23.18%
17 186 10.57% 11.28% 12.08% 21.63% 24.80% 144 9.91% 10.61% 11.40% 21.13% 24.34%
18 147 12.09% 12.89% 13.77% 22.68% 25.78% 160 11.46% 12.27% 13.29% 22.29% 25.52%
19 160 13.83% 14.70% 15.80% 23.66% 26.70% 115 13.37% 14.34% 15.40% 23.48% 26.54%
20 115 15.88% 16.90% 18.00% 24.60% 27.45% 127 15.49% 16.49% 17.75% 24.44% 27.38%
21 127 18.10% 19.12% 20.40% 25.33% 28.03% 95 17.83% 19.13% 20.69% 25.33% 28.08%
22 96 20.49% 21.80% 23.45% 25.95% 28.45% 109 20.81% 22.46% 24.28% 26.06% 28.51%
23 112 23.49% 25.13% 26.97% 26.39% 28.59% 80 24.31% 26.12% 28.40% 26.47% 28.55%
24 90 27.11% 29.01% 31.38% 26.55% 28.34% 79 28.52% 30.78% 33.09% 26.51% 28.14%
25 94 31.60% 34.06% 36.61% 26.27% 27.58% 84 33.23% 35.61% 38.64% 26.09% 27.16%
26 83 36.66% 39.20% 42.79% 25.53% 26.15% 60 39.23% 42.07% 45.45% 24.96% 25.39%
27 75 42.99% 46.64% 51.65% 23.84% 23.36% 52 45.75% 49.14% 54.43% 23.14% 22.34%
28 74 52.47% 58.04% 64.90% 20.17% 18.03% 65 54.66% 59.94% 66.83% 19.46% 17.16%
29 38 65.73% 72.31% 79.40% 14.24% 11.10% 38 67.74% 74.75% 82.07% 13.11% 9.73%
30 17 80.63% 87.94% 96.28% 6.56% 2.09% 17 83.28% 89.99% 97.17% 5.48% 1.59%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel D-(ii): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 1847 0.00% 0.08% 0.18% 0.93% 2.24% 1847 0.00% 0.08% 0.18% 0.93% 2.25%
2 1176 0.18% 0.29% 0.41% 2.38% 3.91% 1176 0.18% 0.29% 0.41% 2.38% 3.92%
3 952 0.41% 0.53% 0.69% 3.70% 5.54% 952 0.41% 0.53% 0.69% 3.71% 5.55%
4 756 0.69% 0.85% 1.03% 5.10% 7.18% 756 0.69% 0.85% 1.04% 5.11% 7.19%
5 610 1.04% 1.22% 1.43% 6.50% 8.77% 610 1.04% 1.23% 1.44% 6.51% 8.78%
6 487 1.43% 1.64% 1.87% 7.85% 10.28% 487 1.44% 1.65% 1.88% 7.87% 10.30%
7 437 1.87% 2.10% 2.36% 9.15% 11.73% 437 1.88% 2.11% 2.36% 9.17% 11.75%
8 365 2.36% 2.62% 2.92% 10.44% 13.20% 365 2.37% 2.63% 2.93% 10.46% 13.22%
9 395 2.93% 3.23% 3.57% 11.80% 14.69% 395 2.94% 3.24% 3.58% 11.82% 14.71%
10 299 3.57% 3.92% 4.30% 13.14% 16.13% 299 3.58% 3.93% 4.31% 13.16% 16.15%
11 252 4.31% 4.69% 5.08% 14.47% 17.50% 252 4.32% 4.70% 5.09% 14.49% 17.52%
12 252 5.08% 5.47% 5.91% 15.67% 18.78% 252 5.10% 5.49% 5.92% 15.69% 18.80%
13 221 5.92% 6.37% 6.88% 16.89% 20.08% 221 5.94% 6.38% 6.90% 16.91% 20.10%
14 203 6.89% 7.40% 7.96% 18.14% 21.34% 203 6.90% 7.42% 7.98% 18.15% 21.35%
15 174 7.98% 8.54% 9.17% 19.33% 22.54% 174 7.99% 8.56% 9.18% 19.34% 22.56%
16 160 9.19% 9.81% 10.55% 20.48% 23.72% 160 9.21% 9.83% 10.57% 20.50% 23.73%
17 186 10.58% 11.32% 12.14% 21.65% 24.83% 186 10.60% 11.33% 12.15% 21.67% 24.85%
18 147 12.15% 12.97% 13.89% 22.73% 25.84% 147 12.17% 12.99% 13.90% 22.74% 25.84%
19 160 13.95% 14.85% 15.98% 23.73% 26.77% 160 13.97% 14.87% 16.00% 23.74% 26.78%
20 115 16.07% 17.13% 18.27% 24.69% 27.53% 115 16.09% 17.14% 18.28% 24.69% 27.53%
21 127 18.37% 19.43% 20.75% 25.41% 28.09% 127 18.38% 19.44% 20.75% 25.41% 28.09%
22 96 20.84% 22.19% 23.88% 26.02% 28.48% 96 20.84% 22.19% 23.88% 26.02% 28.48%
23 112 23.92% 25.59% 27.46% 26.43% 28.58% 112 23.92% 25.59% 27.45% 26.43% 28.58%
24 90 27.61% 29.52% 31.90% 26.54% 28.29% 90 27.60% 29.51% 31.88% 26.54% 28.29%
25 93 32.12% 34.53% 37.03% 26.22% 27.49% 93 32.10% 34.50% 37.00% 26.22% 27.50%
26 84 37.08% 39.58% 43.09% 25.46% 26.07% 84 37.04% 39.54% 43.04% 25.47% 26.08%
27 75 43.29% 46.81% 51.61% 23.80% 23.37% 75 43.24% 46.75% 51.56% 23.82% 23.39%
28 74 52.40% 57.77% 64.45% 20.27% 18.22% 74 52.34% 57.73% 64.42% 20.29% 18.24%
29 38 65.27% 71.86% 79.06% 14.45% 11.27% 38 65.24% 71.85% 79.07% 14.45% 11.27%
30 17 80.33% 87.84% 96.35% 6.61% 2.05% 17 80.34% 87.85% 96.36% 6.61% 2.05%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel E-(i): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC0 default probability computation across different bins TTC1 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 2019 0.00% 0.06% 0.15% 0.76% 1.96% 2025 0.00% 0.04% 0.11% 0.58% 1.53%
2 1179 0.15% 0.24% 0.35% 2.10% 3.50% 1187 0.11% 0.17% 0.25% 1.63% 2.77%
3 873 0.35% 0.45% 0.59% 3.31% 4.98% 880 0.25% 0.33% 0.42% 2.61% 3.99%
4 700 0.59% 0.72% 0.88% 4.57% 6.49% 689 0.42% 0.52% 0.63% 3.63% 5.25%
5 579 0.88% 1.05% 1.23% 5.87% 8.01% 589 0.64% 0.75% 0.89% 4.71% 6.53%
6 475 1.23% 1.42% 1.63% 7.17% 9.48% 464 0.89% 1.03% 1.18% 5.80% 7.79%
7 423 1.63% 1.84% 2.07% 8.44% 10.90% 421 1.18% 1.33% 1.50% 6.88% 9.03%
8 338 2.07% 2.30% 2.55% 9.67% 12.25% 334 1.51% 1.67% 1.86% 7.95% 10.24%
9 313 2.55% 2.80% 3.05% 10.87% 13.52% 310 1.86% 2.05% 2.23% 9.00% 11.37%
10 269 3.06% 3.30% 3.60% 11.95% 14.74% 269 2.24% 2.42% 2.65% 9.97% 12.51%
11 232 3.60% 3.89% 4.23% 13.09% 16.02% 232 2.65% 2.88% 3.14% 11.03% 13.73%
12 234 4.24% 4.58% 4.95% 14.30% 17.29% 234 3.15% 3.41% 3.70% 12.17% 14.96%
13 234 4.96% 5.33% 5.75% 15.47% 18.54% 235 3.71% 4.00% 4.35% 13.30% 16.22%
14 196 5.76% 6.19% 6.68% 16.66% 19.83% 195 4.35% 4.69% 5.09% 14.48% 17.52%
15 196 6.70% 7.18% 7.74% 17.88% 21.10% 200 5.10% 5.51% 5.98% 15.73% 18.87%
16 166 7.75% 8.31% 8.92% 19.10% 22.31% 165 5.98% 6.45% 6.99% 17.00% 20.21%
17 160 8.95% 9.59% 10.35% 20.29% 23.56% 159 7.01% 7.54% 8.21% 18.29% 21.60%
18 188 10.38% 11.15% 12.01% 21.53% 24.75% 187 8.22% 8.89% 9.65% 19.66% 22.97%
19 145 12.02% 12.88% 13.82% 22.67% 25.80% 144 9.67% 10.42% 11.27% 20.98% 24.25%
20 160 13.88% 14.83% 16.02% 23.72% 26.79% 160 11.33% 12.20% 13.31% 22.25% 25.53%
21 115 16.11% 17.23% 18.43% 24.72% 27.57% 115 13.40% 14.45% 15.61% 23.54% 26.63%
22 127 18.53% 19.66% 21.07% 25.47% 28.15% 139 15.71% 16.95% 18.56% 24.62% 27.61%
23 96 21.16% 22.61% 24.43% 26.09% 28.52% 100 18.61% 20.25% 22.06% 25.62% 28.29%
24 112 24.47% 26.29% 28.32% 26.48% 28.56% 105 22.20% 24.03% 26.26% 26.28% 28.59%
25 90 28.48% 30.59% 33.20% 26.51% 28.13% 86 26.32% 28.54% 31.41% 26.55% 28.34%
26 97 33.45% 36.26% 39.19% 26.00% 27.04% 91 31.59% 34.50% 37.53% 26.22% 27.40%
27 87 39.37% 42.26% 46.18% 24.92% 25.17% 81 37.66% 40.74% 45.14% 25.24% 25.48%
28 75 46.61% 50.91% 57.06% 22.61% 21.32% 75 45.40% 49.95% 56.14% 22.90% 21.68%
29 78 57.51% 63.89% 73.13% 17.89% 14.21% 77 57.14% 64.10% 73.13% 17.81% 14.21%
30 44 73.73% 83.14% 97.56% 9.03% 1.38% 52 74.27% 83.98% 98.21% 8.60% 1.01%
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Table 7: Alternative #2 TTC0, TTC1, TTC2, and TTC3 PD, VaR, and ConVaR algorithmic segmentation 

We run the k-means clustering algorithm to establish the optimally chosen 30 default probability segments. This algorithmic segmentation accords with the spirit of the 

Basel Final Rule that the through-the-cycle default probability needs to be the bank’s empirically based best estimate of the long-term average of one-year default rates for 

the risky asset exposures in the corresponding homogeneous risk segment. For the k-means clustering algorithm, we set the maximum number of iterations at 100 to ensure 

that the global convergence criterion is met. The k-means clustering algorithm optimizes the Calinski-Harabasz ratio of inter-group to intra-group variance. The optimal k-

means algorithmic segmentation chooses the centroids for different default probability segments such that all of the centroids are sufficiently far apart from one another 

while each centroid attracts numerous default probability estimates with reasonably close proximity. This algorithmic segmentation allows us to gauge the baseline and 

alternative TTC bank capital requirements or equity capital ratios across the optimally chosen 30 default probability segments. For better clarity, we report the asset count, 

the minimum, average, and maximum default probabilities, as well as the value-at-risk and conditional value-at-risk bank capital requirements for each k-means segment.  

 

Panel E-(ii): Parameter permutations with ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

  

Alternative #2 model TTC2 default probability computation across different bins TTC3 default probability computation across different bins
K-means segment Count Minimum Mean Maximum VaR ConVaR Count Minimum Mean Maximum VaR ConVaR

1 2322 0.00% 0.07% 0.18% 0.85% 2.25% 2322 0.00% 0.07% 0.19% 0.86% 2.25%
2 1334 0.19% 0.30% 0.43% 2.44% 4.07% 1334 0.19% 0.30% 0.43% 2.44% 4.08%
3 888 0.43% 0.57% 0.73% 3.89% 5.77% 888 0.44% 0.57% 0.74% 3.90% 5.78%
4 662 0.74% 0.90% 1.09% 5.30% 7.40% 662 0.74% 0.90% 1.09% 5.32% 7.42%
5 535 1.09% 1.27% 1.49% 6.68% 8.96% 535 1.09% 1.28% 1.49% 6.69% 8.98%
6 449 1.49% 1.70% 1.93% 8.03% 10.46% 449 1.50% 1.71% 1.93% 8.04% 10.48%
7 367 1.93% 2.16% 2.42% 9.31% 11.90% 367 1.94% 2.17% 2.43% 9.33% 11.92%
8 333 2.42% 2.68% 2.93% 10.59% 13.23% 333 2.43% 2.69% 2.94% 10.61% 13.25%
9 277 2.94% 3.19% 3.48% 11.72% 14.50% 277 2.95% 3.20% 3.50% 11.74% 14.52%
10 233 3.49% 3.79% 4.13% 12.90% 15.82% 233 3.50% 3.80% 4.14% 12.92% 15.84%
11 234 4.14% 4.47% 4.85% 14.12% 17.11% 234 4.15% 4.49% 4.86% 14.14% 17.14%
12 234 4.85% 5.23% 5.65% 15.31% 18.39% 234 4.87% 5.24% 5.67% 15.33% 18.42%
13 196 5.66% 6.09% 6.59% 16.54% 19.71% 196 5.68% 6.11% 6.61% 16.56% 19.73%
14 196 6.61% 7.10% 7.67% 17.79% 21.02% 196 6.63% 7.12% 7.69% 17.81% 21.04%
15 166 7.68% 8.25% 8.88% 19.04% 22.28% 166 7.70% 8.27% 8.90% 19.06% 22.29%
16 160 8.91% 9.57% 10.36% 20.27% 23.56% 160 8.93% 9.59% 10.38% 20.29% 23.58%
17 188 10.39% 11.18% 12.07% 21.56% 24.79% 188 10.41% 11.21% 12.09% 21.57% 24.81%
18 145 12.08% 12.98% 13.95% 22.73% 25.87% 145 12.11% 13.00% 13.97% 22.74% 25.88%
19 160 14.02% 15.00% 16.24% 23.80% 26.87% 160 14.04% 15.02% 16.26% 23.81% 26.88%
20 115 16.34% 17.50% 18.75% 24.82% 27.66% 115 16.36% 17.52% 18.77% 24.83% 27.66%
21 127 18.86% 20.03% 21.49% 25.57% 28.21% 127 18.87% 20.04% 21.50% 25.57% 28.21%
22 96 21.59% 23.08% 24.95% 26.16% 28.55% 96 21.60% 23.08% 24.95% 26.16% 28.55%
23 112 25.00% 26.85% 28.91% 26.51% 28.53% 112 25.00% 26.84% 28.90% 26.51% 28.53%
24 90 29.08% 31.19% 33.80% 26.49% 28.05% 90 29.06% 31.17% 33.77% 26.49% 28.05%
25 93 34.04% 36.68% 39.42% 25.94% 26.99% 93 34.01% 36.65% 39.37% 25.95% 27.00%
26 84 39.46% 42.18% 45.98% 24.94% 25.23% 84 39.42% 42.13% 45.92% 24.95% 25.25%
27 75 46.19% 49.96% 55.09% 22.90% 22.09% 75 46.13% 49.90% 55.04% 22.91% 22.11%
28 74 55.93% 61.59% 68.55% 18.82% 16.37% 73 55.87% 61.45% 67.89% 18.87% 16.68%
29 38 69.39% 75.99% 83.00% 12.53% 9.25% 37 68.53% 75.41% 81.80% 12.80% 9.87%
30 17 84.18% 90.73% 97.63% 5.09% 1.34% 19 82.82% 89.92% 97.63% 5.52% 1.33%
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Table 8: Alternative #2 value-at-risk and conditional value-at-risk capital requirements 

This table lists the asset-equivalent weighted-average value-at-risk and conditional value-at-risk bank capital requirements or equity 

capital ratios for the alternative permutations of TTC adjustments (TTC0, TTC1, TTC2, and TTC3) and idiosyncratic risk correlation 

values (from 40% to 60% in increments of 5%). Across the value-at-risk and conditional value-at-risk panels, the TTC1 adjustments 

consistently introduce non-trivial downward biases in the asset-equivalent weighted-average equity capital ratios relative to the TTC0 

brute-force adjustments and the TTC2/TTC3 higher-order Taylor-series approximations. The more accurate TTC0, TTC2, and TTC3 

asset-equivalent weighted-average value-at-risk and conditional value-at-risk bank equity capital ratios land in the intermediate range 

of 8% to 13% across the wide spectrum of idiosyncratic risk correlation values. The quantitative results that favor the recent proposal 

for substantially heighted bank capital requirements indicates first-order discrepancies between these alternative equity capital ratios 

and the newly introduced Basel equity capital ratio of 3% to 6% when the prudent econometrician raises the asset correlation value to 

35% to account for default contagion in times of severe financial stress. The evidence resonates with the central thesis that the typical 

bank should hold a much larger capital cushion to absorb extreme losses in a financial downturn.  

 

 

 
 

 

Alternative equity capital ξ =40% ξ =45% ξ =50% ξ =55% ξ =60%
Value-at-risk capital 
TTC0 10.78% 10.27% 9.74% 9.22% 8.68%

TTC1 9.77% 9.27% 8.73% 8.21% 7.66%

TTC2 10.71% 10.20% 9.66% 9.13% 8.59%

TTC3 10.72% 10.21% 9.67% 9.14% 8.60%

Conditional value-at-risk capital
TTC0 13.08% 12.48% 11.92% 11.33% 10.61%

TTC1 11.98% 11.46% 10.83% 10.22% 9.39%

TTC2 13.00% 12.40% 11.87% 11.22% 10.62%

TTC3 13.01% 12.41% 11.88% 11.23% 10.64%
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Figure 1: Systematic risk factor and its observable macroeconomic and sector-specific components 

This chart shows the time-series plots of both the systematic risk factor and its observable and unobservable components over 1,000 

annual cohorts. The systematic risk factor moves in tandem with the joint gyrations in the observable and unobservable components. 

The vast majority of the systematic, macroeconomic, and sector-specific risk factors land within the 95% confidence interval around 

zero. Only the first of these latter random variables, the observable part of systematic risk serves as one of the explanatory variables in 

the logit regression model of default likelihood. This observable variable is a linear combination of systematic macro fluctuations such 

as GDP growth, unemployment, house price variation, and so forth. The other explanatory variable is the observable component of 

idiosyncratic risk that represents a linear combination of asset-specific attributes such as FICO, loan-to-value, debt-to-income, and so 

forth. In brief, these observable variables help develop a reasonably accurate logistic default probability model for the subsequent 

value-at-risk and conditional value-at-risk equity capital analysis.  
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Figure 2: Stereoscopic visualization of default probability, confidence level, and value-at-risk equity capital  

This chart provides the stereoscopic visualization of default probability (PD), confidence level (α), and value-at-risk equity capital (κ). The value-at-risk or conditional value-at-risk bank equity capital 

ratio is a highly non-linear quasi-concave function of default likelihood. At a given confidence level, the equity capital ratio first increases with PD up to some intermediate threshold and then decreases 

with PD. This watershed appears to be between 25% and 40%. This non-linear trend highlights an important part of the equity capital formula: the equity capital cushion covers only the large financial 

losses above and beyond the average loss, the latter of which simply equates PD times LGD. Therefore, the equity capital ratio first increases with PD as the marginal increase in financial risk exposure 

incurs large losses that in turn outweigh the average reserve for asset impairment. As PD increases, the likely loss severity declines up to some point at which the sum of additional losses is equal to the 

average loss provision. When PD rises above this watershed, the average loss provision more than fully offsets any marginal loss. In this latter case, the equity capital requirement decreases as the asset 

exposures exhibit much greater default likelihood in the highest PD segments. The conditional value-at-risk capital surface consistently embeds an overlay on top of the value-at-risk capital surface. The 

former exhibits a faster speed of capital deterioration than the latter in the right tail of the PD spectrum. Hence, the conditional value-at-risk equity capital requirement typically exceeds the value-at-risk 

equity capital requirement up to some PD threshold while the former declines more quickly than the latter beyond this PD threshold.   
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Figure 3: A time-series comparison of baseline TTC0, TTC1, TTC2, and TTC3 PDs 

This chart encapsulates the point-in-time PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. Panels A to 

E show the information for the different asset correlation permutations ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50%. Within 

each panel, the left-hand side displays the TTC0 PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. The 

long-term average TTC1 PD is less than the long-term average TTC0, TTC2, and TTC3 PDs by an order of magnitude. For instance, 

the baseline set of risk parameters {ρ, φ, ξ}={15%, 50%, 50%} yields the long-run average TTC0, TTC2, and TTC3 PDs near 5.30%, 

whereas, the long-run average TTC1 PD is no greater than 4.65%. Thus, the TTC1 method substantially underestimates the TTC0 PD 

and equity capital results that better accord with the spirit of the Basel TTC regulatory requirement. The right-hand side of each panel 

magnifies the fine neighborhood of the long-run average TTC0, TTC2, and TTC3 PDs. In particular, the long-run average TTC3 PD 

better approximates the long-run average TTC0 PD than the TTC2 counterpart. At any rate, the TTC2 and TTC3 PD approximations 

are both sufficiently close to the TTC0 origin. Our subsequent analysis suggests that these higher-order approximations are accurate 

enough for the equity capital differences to be reasonably minimal.   

 

 

Panel A: Baseline TTC PD computation ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 3: A time-series comparison of TTC0, TTC1, TTC2, and TTC3 PDs 

Panel B: Baseline TTC PD computation ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

 

Panel C: Baseline TTC PD computation ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 3: A time-series comparison of baseline TTC0, TTC1, TTC2, and TTC3 PDs 

Panel D: Baseline TTC PD computation ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 

 

 

Panel E: Baseline TTC PD computation ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 4-(a): Baseline TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 4-(b): Baseline TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 4-(c): Baseline TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 4-(d): Baseline TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 4-(e): Baseline TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ={15%, 20%, 25%, 30%, 35%}, φ=50%, and ξ=50% 
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Figure 5: Baseline TTC0, TTC1, TTC2, and TTC3 value-at-risk equity capital  

This chart shows the TTC0, TTC1, TTC2, and TTC3 value-at-risk equity capital ratios across the 30 k-means PD segments. At least 

three empirical results arise from this diagrammatical representation. First, the equity capital ratios exhibit a concave positive relation 

with PD across the first 20-25 segments. Beyond the watershed, the equity capital ratios quickly decline across the last 5 segments. A 

concave hump exists across the board, and higher asset correlation tends to lift the height of this hump. This phenomenon magnifies 

the cross-sectional variation in equity capital. Second, the TTC1 equity capital ratios underestimate the true TTC0 counterparts. This 

evidence is more pronounced for the special case of ρ=30%. Third, it is hard to identify any peculiar empirical relationship between 

PD and asset correlation. For an invariant equity capital ratio, higher asset correlation seems to correspond to the lower PD segments. 

However, this capital-invariance assumption does not hold in a dynamic equilibrium context. In effect, the value-at-risk equity capital 

ratios gyrate in response to changes in both asset correlation and PD segmentation. In this more realistic dynamic view, equity capital 

movements adjust in accordance with changes in both asset correlation and portfolio composition. The empirical relation between PD 

and asset correlation can be positive, negative, or ambiguous. This empirical relation depends upon how equity capital requirements 

dynamically react to the joint changes in asset correlation and PD segmentation.  
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Figure 6: Baseline TTC0, TTC1, TTC2, and TTC3 conditional value-at-risk equity capital  

This chart shows the TTC0, TTC1, TTC2, and TTC3 conditional value-at-risk capital ratios across the 30 k-means segments. At least 

three empirical results arise from this diagrammatical representation. First, the equity capital ratios exhibit a concave positive relation 

with PD across the first 20-25 segments. Beyond the watershed, the equity capital ratios quickly decline across the last 5 segments. A 

concave hump exists across the board, and higher asset correlation tends to lift the height of this hump. This phenomenon magnifies 

the cross-sectional variation in equity capital. Second, the TTC1 equity capital ratios underestimate the true TTC0 counterparts. This 

evidence is more pronounced for the special case of ρ=30%. Third, it is hard to identify any peculiar empirical relationship between 

PD and asset correlation. For an invariant equity capital ratio, higher asset correlation seems to correspond to the lower PD segments. 

Nevertheless, this capital-invariance assumption does not hold in a dynamic equilibrium context. The conditional value-at-risk capital 

ratios gyrate in response to changes in both asset correlation and PD segmentation. In this more realistic dynamic view, equity capital 

movements adjust in accordance with changes in both asset correlation and portfolio composition. The empirical relation between PD 

and asset correlation can be positive, negative, or ambiguous. This empirical relation depends upon how equity capital requirements 

dynamically react to the joint changes in asset correlation and PD segmentation.  
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Figure 7: A time-series comparison of alternative TTC0, TTC1, TTC2, and TTC3 PDs 

This chart plots the point-in-time PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. Panels A to E show 

this information for the alternative correlation permutations ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50%. Within each panel, 

the left-hand side plots the TTC0 PD time-series and the long-run average TTC0, TTC1, TTC2, and TTC3 PDs. The long-run mean 

TTC1 PD is lower than the long-term mean TTC0, TTC2, and TTC3 PDs by a full order of magnitude. For instance, the baseline set 

of risk parameters {ρ, φ, ξ}={15%, 50%, 50%} yields the long-term average TTC0, TTC2, and TTC3 PDs near 5.30%, whereas, the 

long-term average TTC1 PD is lower than 4.65%. Hence, the TTC1 approach substantially underestimates the TTC0 PD and equity 

capital results that better accord with the spirit of the Basel TTC regulatory requirement. The right-hand side of each panel magnifies 

the fine neighborhood of the long-term average TTC0, TTC2, and TTC3 PDs. The long-term average TTC3 PD sometimes slightly 

overestimates the long-term average TTC0 PD while the long-term average TTC2 PD underestimates the long-run average TTC0 PD. 

In effect, the long-run average TTC3 PD better approximates the long-run average TTC0 PD than the TTC2 counterpart. At any rate, 

the TTC2 and TTC3 PD approximations are both sufficiently close to the TTC0 origin. Our subsequent capital analysis suggests that 

these higher-order approximations are accurate enough for the equity capital differences to be reasonably minimal.   

 

 

Panel A: Alternative #1 TTC PD computation ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 7: A time-series comparison of alternative TTC0, TTC1, TTC2, and TTC3 PDs 

Panel B: Alternative #1 TTC PD computation ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

 

Panel C: Alternative #1 TTC PD computation ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 7: A time-series comparison of alternative TTC0, TTC1, TTC2, and TTC3 PDs 

Panel D: Alternative #1 TTC PD computation ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 

 

 

Panel E: Alternative #1 TTC PD computation ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 8-(a): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 8-(b): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 8-(c): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 8-(d): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 8-(e): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50% 
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Figure 9: Alternative #1 TTC0, TTC1, TTC2, TTC3 value-at-risk equity capital 

This chart displays the TTC0, TTC1, TTC2, and TTC3 value-at-risk equity capital ratios across the 30 k-means segments. The equity 

capital curve almost overlap although these curves reflect different systematic macro correlation permutations ρ=15%, φ={40%, 45%, 

50%, 55%, 60%}, and ξ=50%. This evidence is no surprise because our logistic default probability model is reasonably accurate with 

about 90% concordance percentages. Insofar as this model predicts binary default occurrence correctly most of the time, whether the 

observable systematic macro factor significantly correlates with the unobservable counterpart does not matter much. In summary, the 

value-at-risk equity capital ratios do not vary much in response to this alternative set of systematic risk correlation permutations.  
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Figure 10: Alternative #1 TTC0, TTC1, TTC2, TTC3 conditional value-at-risk equity capital 

This chart displays the TTC0, TTC1, TTC2, and TTC3 conditional value-at-risk equity capital ratios across the 30 k-means segments. 

The equity capital curve almost overlap although these curves reflect different systematic macro risk correlation permutations ρ=15%, 

φ={40%, 45%, 50%, 55%, 60%}, and ξ=50%. This evidence is no surprise because our logit default probability model is reasonably 

accurate with about 90% concordance percentages. Insofar as this model predicts binary default occurrence correctly most of the time, 

whether the observable systematic macro risk factor significantly correlates with the unobservable counterpart does not matter much. 

The conditional value-at-risk equity capital ratios do not vary much in response to this alternative set of systematic macro correlation 

permutations.  
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Figure 11: A time-series comparison of alternative TTC0, TTC1, TTC2, and TTC3 PDs 

This chart plots the point-in-time PD time-series and the long-term average TTC0, TTC1, TTC2, and TTC3 PDs. Panels A to E show 

this information for the alternative correlation permutations ρ=15%, φ={40%, 45%, 50%, 55%, 60%}, and ξ=50%. Within each panel, 

the left-hand side plots the TTC0 PD time-series and the long-run average TTC0, TTC1, TTC2, and TTC3 PDs. The long-run mean 

TTC1 PD is lower than the long-term mean TTC0, TTC2, and TTC3 PDs by a full order of magnitude. For instance, the baseline set 

of risk parameters {ρ, φ, ξ}={15%, 50%, 50%} yields the long-term average TTC0, TTC2, and TTC3 PDs near 5.30%, whereas, the 

long-term average TTC1 PD is lower than 4.65%. Hence, the TTC1 approach substantially underestimates the TTC0 PD and equity 

capital results that better accord with the spirit of the Basel TTC regulatory requirement. The right-hand side of each panel magnifies 

the fine neighborhood of the long-term average TTC0, TTC2, and TTC3 PDs. The long-term average TTC3 PD sometimes slightly 

overestimates the long-term average TTC0 PD while the long-term average TTC2 PD underestimates the long-run average TTC0 PD. 

In effect, the long-run average TTC3 PD better approximates the long-run average TTC0 PD than the TTC2 counterpart. At any rate, 

the TTC2 and TTC3 PD approximations are both sufficiently close to the TTC0 origin. Our subsequent capital analysis suggests that 

these higher-order approximations are accurate enough for the equity capital differences to be reasonably minimal.   

 

 

Panel A: Alternative #2 TTC PD computation ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 11: A time-series comparison of alternative TTC0, TTC1, TTC2, and TTC3 PDs 

Panel B: Alternative #2 TTC PD computation ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

 

Panel C: Alternative #2 TTC PD computation ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 11: A time-series comparison of alternative TTC0, TTC1, TTC2, and TTC3 PDs 

Panel D: Alternative #2 TTC PD computation ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 

 

 

Panel E: Alternative #2 TTC PD computation ρ=15%, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 12-(a): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 12-(b): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 12-(c): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 12-(d): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 12-(e): Alternative #1 TTC0, TTC1, TTC2, and TTC3 PD histograms with ρ=15, φ=50%, and ξ={40%, 45%, 50%, 55%, 60%} 
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Figure 13: Alternative #2 TTC0, TTC1, TTC2, TTC3 value-at-risk equity capital 

This chart shows the TTC0, TTC1, TTC2, and TTC3 value-at-risk equity capital ratios across the 30 k-means segments. When the 

idiosyncratic risk correlation value increases from 40% to 60% in increments of 5%, we observe a fair bit of credit migration from the 

higher PD segments to the lower PD segments. This increase in idiosyncratic risk correlation suggests that the econometrician faces 

less uncertainty around the idiosyncratic risk factor. This reduction in idiosyncratic uncertainty indicates lower model risk. A plausible 

economic interpretation indicates that this lower model risk translates into a tangible benefit in the form of equity capital relief. Hence, 

the bank requires a lower equity capital cushion when the logistic default probability model more accurately captures idiosyncratic risk 

through higher correlation between the observable and unobservable components of the idiosyncratic risk factor.  

 

 

 

 

  



100 

 

Figure 14: Alternative #2 TTC0, TTC1, TTC2, TTC3 conditional value-at-risk equity capital 

This chart shows the TTC0, TTC1, TTC2, and TTC3 conditional value-at-risk capital ratios across the 30 PD segments. When the 

idiosyncratic risk correlation value increases from 40% to 60% in increments of 5%, we observe a fair bit of credit migration from the 

higher PD segments to the lower PD segments. This increase in idiosyncratic risk correlation suggests that the econometrician faces 

less uncertainty around the idiosyncratic risk factor. This reduction in idiosyncratic uncertainty indicates lower model risk. A plausible 

economic interpretation indicates that this lower model risk translates into a tangible benefit in the form of equity capital relief. Hence, 

the bank requires a lower equity capital cushion when the logistic default probability model more accurately captures idiosyncratic risk 

through higher correlation between the observable and unobservable components of the idiosyncratic risk factor.  

 

 

 


