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Analyzing the Performance of Multi-Factor Investrmen
Strategies under Multiple Testing Framework

Abstract

Evaluating portfolios based on numerous combinatmfifactors using individual
backtesting method could suffer serious data mibiag and lead to spurious significant
findings. Accordingly, we employ a multiple testingethod to examine the significance
of Sharpe ratios of multi-factor portfolios. Our gincal results show that even after
adjusting for data mining bias, the stock pickitigategies with certain combined firm
characteristics could obtain significantly bettésk+scaled returns than both value-
weighted index and small-cap value portfolio. Thpesior performance of multi-factor
portfolios is more stable than single factor pdiv®over different subsamples. Moreover,

the outperforming multi-factor strategies are rdatiasalternative definitions of factors.

Keywords Data mining bias, multi-factor investment strategultiple hypotheses testing,
passive index investing, smart beta.
JEL classificationsG11, G17.



Introduction

Combining multiple factors to build winning stockcking strategy is an appealing idea
for a growing and large number of investors. Unfodtely, since there are numerous
possible combinations of factors, the backtestifignailti-factor strategies based on
individual hypothesis testing framework could leadgerious data mining bias. That is, if
the researcher uses 5% significance level to tast mdividual hypotheses with the same
historical datasets, she could eventually find @rispisly outperforming strategy after a

large number of trials.

To address the data mining bias problem, we appbtdirap-based multiple testing
method to evaluate the performance of multi-facteestment strategies, which have been
quite popular in recent years. The ETFs under #menof smart beta or multi-factor have
attracted over $60 billion fund inflows each yefce 2013 and account for one-fifth of
the $1.7 trillion US ETF total assets in 2015 (@ggworth 2016). Kahn and Lemmon
(2016) even state that the smart beta product etmmv has posed a threat to the traditional
active fund industry. While the current majority sfmart beta ETFs adopt an
uncomplicated rule based on the single factor sisclalue strategy, there has been a trend
for ETF providers to launch products that combindtiple factors. This type of ETFs has
been dubbed smart beta 2.0, smarter beta, or faattr funds (Authers 2015; Noblett
2015; Wigglesworth 2016).

The concern for data mining bias is not new. McQuaed Thorley (1999) discuss the
potential data mining pitfalls in testing the potfitd performance of quantitative stock
screening. Bailey and de Prado (2014) and HarveylLaun (2014) provide the statistical
framework to adjust the Sharpe ratio for evaluatiagling strategies in general. Novy-
Marx (2016) shows that thestatistics of mean returns could be severelyieflavhen the

portfolio is constructed by combining the besttstyées.

The contribution of this study is twofold. Firstevepply the data-driven approach by
Hsu et al. (2014) to empirically examine the pearfance of the multi-factor strategies. The
aforementioned studies focus on adjusting the leatikig to mitigate data mining bias but

do not conduct an empirical investigation on mfdttor strategies. In contrast, this study



answers the question of whether there exists supeilti-factor strategy after adjusting
for data mining bias. Furthermore, because theipheiitesting methods that are based on
independence or arbitrary dependence assumptidd beunuch more conservative, they
could have much less power to identify significgrstliperior strategies. The advantage of
data-driven methodology is that the information wbdependence structure among the
portfolios performance is taken into account digeftom the data and hence is more
powerful.

Second, we show that there are benefits by contpiaifiew factors into one while
constructing portfolio strategy. For instances, ¢ihder of outperformance in the single-
factor portfolios universe is sensitive to the deiion of factors, whereas the outperforming
multi-factor strategies are more robust. A recyriheme is the portfolio of firms with
combined characteristics of small-cap, value, mgbmentum, and low volatility; the
portfolio’s outperformance is consistently sigrgfit regardless how we measure valuation
ratio, momentum, or volatility. The in-sample and-of-sample analysis also show that
multi-factor strategies have more stable outperéoroe than the single-factor portfolios.
This is because the performance of multi-factaatetzies does not rely on one particular
factor exposure, instead the constituents of thefgioms are firms with diversified
characteristics to earn higher risk-adjusted restufiis finding is also consistent with the
suggestion by Cliff Asness, co-founder of AQR CalpManagement, who advocates

diversification and keeping all factors "on" mosttee time (Kim, 2016).

By using the sample from 1968 to 2015, we iderdifjte a few multi-factor strategies
that significantly outperform market portfolio iertms of Sharpe ratio under multiple
hypotheses testing. The critical value for the afinad Sharpe ratio, which is free of data
mining bias, is approximately 0.6. We consider fedent classes of factors to combine
and each portfolio is rebalanced annually. Ourltesiow that stock selection strategies
based on combining 4 to 6 factors generate sigmfisuperior returns and the results are
robust against different choices of portfolio wegglor definitions of factors. The

annualized Sharpe ratio could be as high as leiintisample analysis.

Furthermore, we examine the outperformance of théti4iactor portfolios against

small-cap value portfolio. Arnott et al. (2013) gegt that many multi-factor strategies or



smarter beta ETFs resemble small-cap value pariftius they simply provide product
varieties without additional economic value. Thi¢ical value for the annualized Sharpe
ratio increases to around 0.8 if we change thelbaadk to small-cap value portfolio. As
a result, the number of outperforming multi-facfmrtfolios is significantly reduced.

Nevertheless, we still find that there exists angglportunity for investors to improve their

portfolio selection through multi-factor strategies
Backtesting without Data Mining Bias

We use the difference between Sharpe ratio oi-theportfolio, SR, and that of the
benchmark portfolioSR? , as the portfolio performance evaluation metriaur Qull

hypotheses of interests are

H.: SR' — SR? <0, i=1,..,M, (2)
whereM is the number of portfolios considered &@Rlis the annualized Sharpe ratio
calculated as/12 multiply with the mean excess returns and thendeiby the standard
deviation of the excess retur@ur objective is to find a common threshold oricaltvalue
to decide which null hypotheses to reject undettipiel testing framework. In other words,
we thereby determine how large the Sharpe ratferéifice should be for a collection of
multi-factor portfolios to significantly beat thetchmark portfolio without data mining

bias.

The critical value for a test statistic in indivadthypothesis testing is estimated so that
the probability of committing Type | Error is bowedt below a certain threshold which
depends on the desired significance level. Howewemultiple hypotheses testing, we
need to consider a different notion of error ragéole we develop the testing procedure.
Unlike individual hypothesis testing, there areimas types of error rates in the multiple
testing literature. In this study, we use Falseb®igry Proportion (FDP), which is defined
as the ratio between the number of false reject{dype | Errors) and the total number of
rejections. If there is no rejection, then FDPafinkd as 0. We say that a statistical testing

method controls the FDP if the procedure could r@ssu

P{FDP > ¢} < q, 1)



whereé anda are the user-specified inputs.

To control the FDP, we use the FDP-SPA procedutbéned in Hsu et al. (2014).
Intuitively, the multiple testing framework proceeds follows. First, we calculate the
performance measures for portfolios 1, ..., M. Starting fromk = 1, we follow Step-
SPAK) algorithm also in Hsu et al. (2014), which coidrdo-FWER ata level, wherek-
FWER is the probability of falsely rejecting at$eltrue null hypotheses. We then reject
the portfolios with performance metrics being geedhan the critical value estimated by
Step-SPA(1). If there is no rejection, i.e. nonehe portfolio has superior performance,
then we stop. Otherwise, we apply Step-S&A] untilk/(N, + 1) > &, whereN, is the
number of rejection at stage The final critical value is the threshold for thertfolio
performance measures that would asymptotically robihe FDP belowr. The exact
algorithms of the Step-SPK(and FDP-SPA are given in the Appendix.

In contrast to the procedure suggested in Harvdy.an(2014) and Harvey et al. (2016),
our method takes into account the dependence steuaimong the portfolio performances
directly from the data. Specifically, the methodptonvolves a bootstrap estimation of the
probability distribution in each step of the stegsvprocedure. Moreover, Romano and
Wolf (2007) suggest that if the test statistics @verelated, then the distribution of FDP
could be highly skewed. This would cause the FBiseovery Rate (FDR)controlling
method, which concerns only about the mean of @R, less appropriate choice of error
rate. Another advantage of the Hsu et al. (201g¢eedure is that it could minimize the
impact of irrelevant underperforming multi-facttradegies, because it is shown in Hansen
(2005) that the statistical power of multiple hypegis testing could be substantially

reduced if too many irrelevant inferior models mn@uded.
Data and Construction of Multi-Factor Strategies

We obtain the accounting and monthly stock retaiats of US firms over 1968-2015
from Compustat and CRSP databases, respectivelyfolldev Beaver et al. (2007) to
adjust for delisting bias in CRSP stock returnsidéib ensure that our sample on US stocks

could serve as meaningful trading purposes, weudrdirms with negative book value of

1 FDR is defined as conditional expected value oPFD total number of rejection is greater than zero
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equity and stock price below $1. The risk-free riatéhe one-month Treasury bill rate

obtained from Professor Kenneth French’s website.

A preliminary step in the multiple testing is toodse a set of factors and then construct
the universe of multi-factor portfolios. Over thasp two decades, the empirical finance
literature has discovered several factors affectiogk returns (see, e.g., Hou et al. 2015).
We select 8 styles of investment strategy and giekrepresentative variable for each style

as the factor to construct the multi-factor portsl

Table 1 gives the definition of the factors we addfhe multi-factor ETF usually
employ four categories of factors. For exampleM#Pgan Diversified Return US Equity
ETF and Global X Scientific Beta U.S. ETF use vakiee, momentum, and volatility as
their underlying factors, and iShares FactorSel@8CI US ETF combines value, size,
momentum, and quality. We choose to adopt a broeldasification than the current
practices of multi-factor ETFs. Other categoriesantors that are not covered by major
multi-factor ETF providers have been documentedthe academic literature to be
influential stock return determinants. By includimgcher set of investment styles, we can
also test whether the performance of multi-fact@tegy could be improved by combining

more factors.

Our multi-factor portfolios are constructed asdals. Each factor is ranked according
to its value in ascending order at the end of Agvgry year. We choose April as the cut-
off for portfolio formation because we retain ofilyns with December fiscal year end and
assume the accounting information is available aitbur-month lag. After the factors are
sorted independently, we assign a varialé) equals the value from 1 to N (the last
number of observations) for each factdrased on its rank. The supersctipidicates that
firm with the lower value of factor receives lovwsmore. If the ranks are tied, then we will
assign the same score. We also define anothertbilgiw ranked variable(x") where its
value equals 1 to N for each decreasingly ranketbffai.e. firms with greater value of
factor receives lower score. We include the “upside/n” version since we choose not to
take any prior knowledge on which order shouldfdwtors be ranked. Moreover, Arnott

et al. (2013) find that some stock selection striatebased on sensible investment belief,



such as picking low PE ratio stocks strategy, cdwdde equal performance when the

factors are sorted in a reverse direction.

We then transform(x) into z-scorez(x), by subtracting its mean and dividing by its
standard deviation within the same year. After waling the z-scores, we add them
together with various combinations. The multi-fagiortfolios are constructed by longing
the stocks with combined z-scores being withindbttom decile. For instance, small-cap
value momentum strategy forms the portfolio of kfowith combined z-scores(mve') +

z(bm") + z(mom12"), being below 10% quantile at the portfolio formattime.

The portfolio weights for each stock are calculaaedollows. Let,, ..., z; denote the
combined z-score of the selectedtocks. We rank and standardize the values, af, zg
once again and denote the new score with., vg. The portfolio weight of stockat the
portfolio formation time is defined as

wF%, i=1,..,5, (3)
j=1 J
whered(-) is the Gaussian cumulative distribution functidvie construct the portfolio
weight this way so that the portfolio exposure taltirfactor score is greater. This is also

in line with Arnott et al. (2005).
Main Results

We begin by analyzing the results of single-fagtortfolios. The value-weighted
market portfolio (k) is used as our benchmark. Figure 1 plots bothnnaea standard
deviation of the portfolio excess returns. Thedagiortfolio returns in our sample exhibit
the same pattern as those predicted in the literafor instance, the portfolio of firms with
bmin the high decile outperforms the ones in the dewile. The small-cap portfolionyé)
has greater mean returns than large-cap portfioli@j. The low volatility portfolio fvol')
has much smaller standard deviation than high Nioygtortfolio (tvol"), despite that their
mean returns are approximately the same. Exclutimgortfoliotvol, the market portfolio
has the lowest standard deviation. Since we cortstne portfolio so that its exposure to
the underlying factor is higher, it is not surgnigithat the portfolionvé® almost has the

same mean and standard deviation as market portfoli



Table 2 shows the critical values for (annualiz8darpe ratio difference based on the
multiple hypotheses testing. We control the FDBadelow 10% with a 95% confidence
level, i.e. we sef anda in Equation (1) equal 0.1 and 0.05, respectiv@le notable result
is that the critical values are roughly the sametlie all types of universes. The critical
value is approximately 0.245, except for the urgesrof two-factor and eight-factor
portfolios which have slightly greater critical uak. The result means that to guard against
data mining bias, we need to require the multidapbrtfolio’s Sharpe ratio to exceed the
market portfolio’s by 0.245 to claim a significamitperformance. The market portfolio
has Sharpe ratio of 0.366 in our sample, so thiearivalue can also be translated as the

hurdle rate for Sharpe ratio is approximately 0.611

Intuitively, when there is a larger universe of thalio strategies to search for the
significant outperformances, one might expect thatcritical value to be greater to guard
against data mining. This is in contrast to ouultssf “flat” critical values across different
types of combinations. This is generally true & fferformances of the portfolio strategies
are independent. However, due to the positive tdio@ among the factors, the critical
value does not need to be greater to alleviatddltee mining bias. Another reason for why
the critical value is not increasing with the safeportfolio universe is that a lot of the
additional strategies which span the larger una/é@ve negative returns, therefore their

contribution to the distribution becomes irrelevamthe limi&.

The numbers of outperforming strategies presemed@able 2 show that there are
various multi-factor investment strategies withtistecally significant Sharpe ratio
differences. In each of the five-factor or six-facstrategies alone, there are almost 200
combinations that could outperform the market pdidf In Table 3 we report the best 5
outperforming schemes for each multi-factor stratége number in parenthesis is the

respective Sharpe ratio difference.

The low volatility portfolio is the only single-féar strategy with Sharpe ratio difference
being greater than the corresponding critical vallree outperformance of low volatility
strategy is also apparent from Figure 1, it isdhby factor portfolio with greater mean

2 This is one of the properties in Hsu et al. (201&DP-SPA. For detailed descriptions, see Appendix
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excess returns and lower standard deviation tha&n ntlarket portfolio. The other
outperforming factor portfolios mostly lie on thpper right to the market portfolio, i.e.
they beat market portfolio in terms of mean excessrns, but their standard deviations
are also higher than the market portfolio’s. Nbt& the Sharpe ratio of small-cap portfolio
or high book-to-market portfolio is also considdyatpreater than the market portfolio’s
but is not large enough to surpass the criticaleal’ his shows that after adjusting for data

mining bias, the returns of most single-factor foids are statistically insignificant.

For the two-factor strategies, there are 11 odtl@fportfolios with the values of Sharpe
ratio difference above the critical value (0.25Eble 3 shows that all of the best 5 two-
factor portfolios involve low volatility factor irtheir sorting strategy. In addition to
outperforming the benchmark with a significant eifnce in Sharpe ratios, the
improvements over low volatility portfolio are gaiitnodest. The Sharpe ratio differences
of well-known two-factor strategies such as smafp-walue m/mve) and momentum
value pm/mom12) are much less than portfolios which include lovlatility factor, but
they are still greater than the critical value @8 &and 0.341, respectively).

We find that by combining three or four factors, aauld increase the Sharpe ratio
difference over low volatility portfolio’s by a mhbchigher margin. All of the best 5
outperforming strategies have at least 0.5 Shatfedifference. It is also noteworthy that
the best strategy in four-factor universe resemiaetsin popular ETF products mentioned
in the introduction. The result shows that portddiiased on combined ranking of small-
cap, value, momentum, and low volatilipnf/mve/mom1/tvol’) delivers Sharpe ratio of
0.579 in excess of the market portfolio Sharperdtiwe drop market capitalization from
the combination, the Sharpe ratio difference besoth&12, which is still statistically
significant.

To compare the portfolio performances across diffenumber of factors, we plot the
Sharpe ratio differences against the rankings withach type of multi-factor strategy.
Figure 2 shows that there is a modest gain in o difference by adding one more
factor to form four-factor strategy. The top 3 arfprming six-factor portfolios and the
best seven-factor portfolio have the highest Sheape among all multi-factor strategies.

The remaining six-factor portfolios fail to perforas well as the five-factor portfolio.



Moreover, most of the seven-factor portfolios aweiior to five-factor or four-factor
portfolios. This pattern is also similar to theldidactor strategies. The best of eight-factor
portfolios outperforms the market portfolio by thienilar magnitude to the best of four-
factor portfolios. However, the performances of tieenaining eight-factor portfolios
deteriorate sharply. Some factors in the eightefastrategies are combined using the
upside-down version, for instance, Table 3 showsits third best strategy includes low
momentum factormiom1? and the fourth best strategy applies low profiiigh(roe)

instead of high profitability factorge").

Out-of -Sample Performance. In Table 4, we compare the in-sample and out-ofpda
portfolio risk-scaled returns. We choose May 204 éha cutoff to split the sample into the
in-sample and out-of-sample period. McLean andiRqA016) suggest that many of the
factors premium or the outperformance over marlatfgio disappear in the sample
period after their academic publications. All of flactors we use in this study are published
before 2010, hence the cutoff in May 2010 shoul@ Ibeasonable choice to evaluate out-
of-sample performances. For the sake of brevitystwawv the results of single- to five-
factor portfolios, the rest of the multi-factor gotios unreported here paint the similar

picture.

Panel A of Table 4 reports the top 3 outperformstigitegies in each multi-factor
portfolio universes for the in-sample and out-afagée period. For each strategy, we show
the in-sample and out-of-sample Sharpe ratio diffees in the parentheses, respectively.
The in-sample critical values for Sharpe ratio efi#éhces, shown in Panel B, are
approximately 0.26 which is slightly higher thare thstimates based on the full sample.
However, we note that the market portfolio Shagimiis 0.304 based on the sample prior
to May 2010, so the data-mining bias free thresti@idhe Sharpe ratio is roughly 0.57,

which is less than the one estimated with full slendata.

With the exception of low volatility portfolio, atif the single-factor portfolios perform
worse than market portfolio in the out-of-samplequ: The small-cap portfolio and value
portfolio are the second and third best portfollesample but have negative Sharpe ratio

differences and are not ranked within the top 3fplos in the out-of-sample period. The
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results also show that large-cap portfolio outpanfosmall-cap portfolio after May 2010;

however, both of them underperform market portfolio

The out-of-sample performances of multi-factor fadids are relatively more stable
than the single-factor portfolios. It appears tadfécult to predict which strategy would
deliver the highest Sharpe ratio difference. Nénadess, the best strategy according to in-
sample Sharpe ratio difference is still among tpedutperforming strategies in the out-
of-sample period. We also note that the Sharpe cdtmarket portfolio in the out-of-
sample period (0.912) is much greater than thempte period (0.304); therefore, even if
the multi-factor strategies outperform the markatfplio by lower magnitude after May
2010, the absolute Sharpe ratio of the portfoliol@gcstill be greater than the in-sample

Sharpe ratio.

Are Multi-Factor Strategies Really Smarter? Many skeptics suggest that multi-factor
strategies are merely a marketing gimmick of ETRdegs. Arnott et al. (2013) argue that
many multi-factor strategies are actually portfsligith exposure tilted toward small-cap
value factors, therefore further adding differeattbrs would not enhance portfolio
performance. In Table 5, we report the backtesesglts by replacing the benchmark with
small-cap value portfolio to investigate if there atill any outperformances in multi-factor

portfolios.

In contrast to the results when the market podfidiused as benchmark, the numbers
of significant outperforming strategies are consatey much smaller since the Sharpe
ratio threshold now becomes greater. The critiefles for Sharpe ratio differences range
between 0.286 and 0.301. The Sharpe ratio of staglivalue portfolio in our full sample
period is 0.534. This means that the absolute $hatm of the multi-factor portfolio has
to be at least 0.82 to be deemed statisticallyifstignt under our multiple hypotheses
testing framework. Therefore, there are not maratesgies that could beat small-cap value
portfolio. This result is as suggested by Arnotile{2013). Nevertheless, the evidences in
Table 5 suggest that other factors such as lowtilitylaand high momentum help improve
the portfolio performances. For example, the Shargigo difference of portfolio
br/mvé/mom12/tvol and small-cap value portfolio is 0.412, which ssges the critical

value for four-factor portfolio universe.
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Robustness Check

In this section, we discuss the sensitivity of thain results with respect to various

research design modifications.

Trimming the extreme observations. To examine if the significant outperformance is
driven only by a few outliers, we exclude the firmigh the extreme value of factors before
calculating the combined multi-factor score. Fochedactor, we trim the 5% extreme
observations from the sample. Therefore, if antheffactors is within 5% quantile, then

the firms are excluded from the portfolio sortihgtt year.

The results, not shown here, are fairly similathi® ones in Tables 2 and 3. The critical
values of Sharpe ratio differences range betwe2f10and 0.248. The only significant
single-factor portfolio igvol with Sharpe ratio 0.391 higher than market podfdlVhen
we keep the extreme observatians) has Sharpe ratio difference of 0.381. We alsoinbta
considerably larger number of significant outparforg portfolios compared to the case
without trimmed observations. This shows that tiygesior performance of multi-factor

investment strategies is not due to the influerideras with extreme factors.

Fixed number of stocks portfolio. Since the earlier years have fewer public firmhs, t
selected stocks in the portfolio based on 10% dleawill be less during this period.
Instead of choosing the cut-off quantiles, we ¢athfe number of stocks to include in the
portfolio across all years. There are trade-offschmosing the portfolio size. While
lowering the number of stocks to purchase couldeia®e the exposure to the desired
factors, it could be less diversified. We try vasonumbers of stocks: 50, 100, 200, and

300. To save space, we do not report the resulesthe they are available upon request.

We find that the critical values for portfolios Wib0 stocks are around 0.29, which is
greater than the critical values shown in Tabld2.a result, the number of significant
outperforming portfolios is smaller. Nonetheledsereé are still many portfolios with
significant Sharpe ratio differences. As we inceei®e number of selected stocks, the
critical value becomes lower and the number ofitg@nt portfolios increases. Of note,
the top outperforming multi-factor portfolios shomriTable 3, e.gonf/mvé/mom1/tvol,

remain significant regardless the number of stae&sided.

12



Alternative definition of factors. We use a different set of proxy variables to chibek
robustness of particular investment styles to #fendion of their factors. Hsu et al. (2015)
also recommended to slightly perturb the definitodrihe factors while evaluating smart

beta strategies. Panel A of Table 6 shows the itiefinof the new set of factors.

In Panel B and Panel C of Table 6, we conduct #meesanalysis with this alternative
definition of the factors. For results with the iketrportfolio as the benchmark, the critical
values range between 0.23 and 0.24, which is gfigtdver than the baseline results in
Table 2. Moreover, there are a large number ofifsegmt portfolios. The four-factor
strategy alone has 245 portfolios that could Hdeattarket portfolio significantly and there
are two single-factor portfolios with significanh&@pe ratio differences, momentum
(wh52") and valuedy"). The low volatility factor portfolio becomes iggiificant when we
use beta as the proxy variable despite that itr&t8 greater Sharpe ratio than the market
portfolio. If we change the benchmark to small-gajue portfolio, then there are only ten
portfolios with significant superior performancewever, we still find that the portfolio
based on small-cap, value, momentum, and low Vityadirategy yields highly significant

Sharpe ratio.

The overall results suggest that which single-fiagtotfolio has the highest Sharpe ratio
may depend on the definition of the factor, butvascombine the factors, the performance

of multi-factor portfolio becomes more robust te factor definitions.

Value-weighted strategies. Table 7 presents the results for the multipleirigsof
portfolio performance when market capitalizationused as the portfolio weight. The
estimated critical values for multi-factor portlSharpe ratio difference turn out to be
greater than the baseline results, while the sifagitor portfolio has smaller estimated
critical value. All of the portfolio performanceeteriorate after we switch the portfolio
weight to market capitalization. None of the sinfgletor portfolios has a significant
Sharpe ratio difference. The results support tbeesiaown in Arnott et al. (2005) that score-
weighted strategy is the better portfolio weightsupeme.

13



Conclusion

This study aims at recent multi-factor ETFs, whicbvide investors the opportunity to
increase their portfolio exposure beyond both aizeé value factors. The multiple testing
framework allows us to analyze the performanceooffplios which are constructed from
numerous factors combinations without data minii@g.bThe results shown in this study
suggest that investors may achieve higher Sharpe ttarough multi-factor portfolio
strategies. We consider two benchmark portfoli@adue-weighted market portfolio and
small-cap value portfolio. The Sharpe ratios ofttkst performing multi-factor portfolios
exceed the benchmarks’ Sharpe ratio by a modestitndg above the estimated critical

value.

We find that a strategy of purposefully biasing tieetfolio weights toward greater
exposure of the multi-factor scores generates bptiefolio performance than the market
capitalization weighted strategy. Our results algggest that the performance of multi-
factor portfolios remains relatively stable tharm thingle-factor portfolio performance
when we alter the definitions of factors. Moreowelnjle it is not possible to predict which
portfolio would have the highest Sharpe ratio eteamthe outperforming multi-factor
portfolios could still consistently beat the benelrkiin both in-sample and out-of-sample

periods.
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Appendix

This appendix presents the FDP-SPA controlling @doce to test the multiple
inequalities
H::SRE—SRP <0, i=1,..,M.

The FDP-SPA procedure is based on applying Stepd§Ragorithm recursively. Let
maxA, K denotes th&-th largest value of vectérand1(-) denotes the indicator function.
FurthermoreX; andY denote the vector of excess returns of portfohod benchmark
portfolio, respectively, and |8t be the sample size of the excess returns. Theguoe
ensures thak{FDP > ¢} < a asymptotically, which means that the probabilifyfalse
discovery proportion exceedirdgis bounded below whenT is large enough. In our
empirical analysis, we use= 0.1 anda = 0.05. The output of the FDP controlling
procedure is a common cutoff point or critical vathat determines which portfolios have

significantly greater Sharpe ratio than the benafmartfolio does.

Step-SPA(£) algorithm with level a

1 procedure stepSPA({X,, ..., Xy, Y}, @, k)

2 Input data: {Xi,.., Xy, Y} # Data of portfolio and benchmark excess returns
3  Input parameter: a,k & FWER(k)’s parameters

4  create vector STAT of size M

5 forie{l,..,M} do

6 A; = SR — SR?

7 A7 = A x 1(VTA; < —ci\/m) # 0; is the standard error of A,

8 STATI[I] = A,

9 end for

10 create matrix X with row size M and column size B

11 forse{l,..,B} do

12 generate bootstrap sample {X7, ..., Xy, Y°}

13 forie{l,..,M}do

14 X[i,s] = A — A + A7 o A} is the SR difference using bootstrap sample s
15 end for

16 end for

17 create sort_index which order the vector STAT from high to low

18 SORTED_X = X[sort_index, :] # re-order rows of X according to the sort_index
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19 NUM_REJECT =0
20 NUM_REJECT = -1

21 create vector KMAX of size B

# The procedure will stop when there is

22  while NUM_REJECT > NUM_REJECT1 do o
no further rejections

23 NUM_REJECT1 = NUM_REJECT
24 if NUM_REJECT < k then do

25 forse{1,..,B} do

26 KMAX[s] = max SORTED_X[: ,s], k)

27 end for

28 else do

29 forse{1,..,B} do

30 KMAX[s] = max SORTED_X[(NUM_REJECT—k + 2):M,s], k)
31 end for

32 end if

33 g = max KMAX, round(a x B) )

34 if g < 0Otheng=0endif

35 CRITCAL_VALUE = g

36 NUM_REJECT = Sun(1(STAT > CRITICAL_VALUE))
37 end while

38 Output: CRITICAL_VALUE

39 end procedure

FDP-SPA with a and &

1 procedure FDP_SPA({X,, ..., X\, Y} a, &)

2 Input data: {Xi, ..., Xy, Y} # Data of portfolio and benchmark excess returns
3  Input parameter: a,¢ ¢ FDP-SPA’s parameters
4  create vector STAT of size M

5 forie{l,..,M} do

6 STAT[i] = SR} — SR?

7 enddo

8 SPA_k =1

9  CRITICAL_VALUE = stepSPA({Xy, ..., Xy, Y}, @, SPA_K)

10 NUM_REJECT = Sum(1(STAT > CRITICAL_VALUE))

11 while NUM_REJECT < SPA_k/ {— 1do
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12
13
14
15
16
17

SPA_k = SPA_k + 1

CRITICAL_VALUE = stepSPA({Xy, ..., Xy, Y}, @, SPA_K)
NUM_REJECT = Sunm{1(STAT > CRITICAL_VALUE))

end while
Output: CRITICAL_VALUE

end procedure
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Annualized Average Excess Returns

Figure 1. Mean excess returns and standard deviatio
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Note The mean and standard deviation are computedsette-weighted portfolio returns from May 1968
to December 2015. The portfolio formation datetitha end of April every year. The superscriptndl|
denote the high and low decile portfolios, respetyi. The portfoliomkt is the value-weighted market
portfolio.
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Annualized Sharp ratio difference

Figure 2. Sharpe ratio differences comparison.
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NoteThis figure provides a comparison of the Sharpie @ifferences among the top 20 portfolios across
different number of factors used in each multi-dacttrategy.
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Table 1. Variable definition.

Style Factor Reference Definition

Value bm Stattman (1980) book value of equity / market vaitiequity

Size mve Banz (1981) market value of equity

Momentum mom12 Jegadeesh (1990) cumulative stoc_k returns over the past twelve
months, excluding the most recent month

Reversal mom36 DeBondt and Thaler (1985) ;gglrglatlve stock returns over the past three

Risk ol Ang et al. (2006) historical volatility of stock returns over the
past 52 weeks

Profitability roe Fama and French (2006) earnings / book value dafyequ

Growth ag Cooper et al. (2008) annual growth of total assets

Earn!ngs accr  Sloan (1996) (EB_IT - cash flow from operations) /

Quiality beginning-of-year total assets

Note The portfolio formation time is end of April eagkar. Annual accounting information is assumebdavailable
with a four-month lag and only firms with Decemifiscal year end are considered. Book value of ggextcludes

preferred stocks.
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Table 2. Sharpe ratio difference of multifactoagtgies.

Number N . Number of Outperforming  Critical Value for Sharpe
of Factors umber of Portfolios Strategies Ratio Difference
1 16 1 0.240
2 112 11 0.255
3 448 61 0.242
4 1120 126 0.246
5 1792 196 0.246
6 1792 197 0.246
7 1024 104 0.248
8 256 25 0.250

Note The critical value of. Sharpe ratio differencelé&fined in Equation (2). The annualized Sharpie aft
market portfolio is 0.366. The number of portfolioseach universe iqs x 2/, wherej is the number of
factors used to construct the multi-factor portisli

Table 3. Strategies with the highest Sharpe ratierdnce.

0?;233:3 Top 5 Strategies
1 tvol' (0.391), mvé (0.170), bt (0.147), roe" (0.102), ad (0.041).
) mvé/tvol' (0.502), mom1&tvol' (0.455), bmfYtvol (0.450), tvol/ad (0.445),
mom38&/tvol' (0.420).
3 mvé/mom12 /tvol' (0.578), mvé/mom38& /tvol (0.540), mvé/tvol/roe" (0.520),

bnYmom1%/tvol' (0.512), brfYmom36/tvol (0.508).

brYmveé/mom12/tvol' (0.579), brd/mvé/mom38/tvol' (0.567),
4 brYmom36/tvol/ad (0.554), mvé/mom1®itvol/roe (0.544),
brYmom1%/tvol/ad (0.536).

brYmveé/mom12/tvol/roe” (0.607), brYmveé/mom36/tvol/ad (0.598),
5 mvé/momSé‘/tvoI'/agJ/roeh (0.581), mvé/momlﬁ'/tvol'/ag‘/roeh (0.571),
br/mvé/mom1%/mom38/tvol (0.571).

er“/mvé/mom1§/tvol'/ag'/roeh (0.657), brrf“/mvé/mom3@/tvol'/ag'/roeh (0.640),
6 er“/mvé/mom1f/mom3@/tvol'/ag| (0.610), brH“/mvé/m0m3@/tvol'/ag'/accrl (0.567),
br/mveé/mom1%/mom38/tvol /roe” (0.561).

er“/mvé/mom1§/m0m3@/tvol'/ag'/roeh (0.634),
er“/mvé/mom3@/tvol'/ag'/roeh/accrl (0.597),

7 er“/mvé/mom1§/tvol'/ag'/roeh/accrl (0.559),
br/mveé/mom1%/mom38/tvol /roeVacct (0.548),
er“/mvé/mom1§/m0m3@/tvol'/ag'/accrI (0.545).

brﬁ“/mvé/mom1f/mom3@/tvoI'/ag'/roeh/accrJ (0.562),
brYmve/mom12 /mom?;t!i‘/tvoI'/ag‘/roeh/accrh (0.500),
8 brﬁ“/mvé/mom12mom3@/tvoI'/ag'/roeh/accrJ (0.472),
brﬁ“/mvé/mom1?/momE;@ltvol'/ag'/roe'/accrh (0.405),
brﬁ“/mvé/mom1?/momE;@/tvol'/ag'/roe'/accrJ (0.404).

Note The number in parentheses is the portfolio’s Bhaaatio difference.
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Table 4. In-sample and out-of-sample comparison.

Panel A.
Number

of Ranked with In-Sample Data Ranked with Out-of-Saniphta
Factors

1 tvol' (0.367, 0.650) tvol' (0.367, 0.650)
bn (0.255, -0.753) mve' (0.037, -0.115)
mvé (0.228, -0.307) mom38 (-0.013, -0.194)

2 mvé/tvol (0.491, 0.865) mvé/tvol (0.491, 0.865)
bVtvol' (0.466, 0.367) mom38&/tvol' (0.403, 0.653)
tvol/ad (0.452, 0.359) mom1tvol (0.444, 0.522)

3 mvé/mom1%/tvol (0.565, 0.795) mvé/mom36/tvol (0.530, 0.904)
mvé/tvol/roe’ (0.532, 0.595) mvé/mom1¥/tvol (0.565, 0.795)
mvé/mom36/tvol (0.530, 0.904) mvé/tvol/acc (0.167, 0.614)

4 bn/mveé/mom18tvol (0.585, 0.616) bn/mveé/mom38/tvol (0.564, 0.857)
brrP/momS@/tvol'/ag| (0.565, 0.487) mvé/mom3@/tvol'/ag| (0.529, 0.682)
br/mveé/mom38/tvol (0.564, 0.857) mvé/mom36/tvol/roé (0.531, 0.643)

5 bnf/mvé/mom12itvol/roe (0.620, 0.593)  bnYmve/mom38itvol/ag (0.610, 0.682)
bnf/mve/mom38/tvol/ag (0.610, 0.682) mvé/mom36/tvol/ag/acc (0.323, 0.649)
mvé/mom36/tvol/ag/roe” (0.591, 0.619) bn/mvé/mom1#/mom3é/tvoll (0.579, 0.632)

Panel B.

Number of Factors  Number of Portfolios Number of Outperforming Critical Value for Sharpe Ratio

Strategies Difference
1 16 1 0.264
2 112 14 0.269
3 448 71 0.262
4 1120 136 0.267
5 1792 237 0.265

Notes Panel A presents the top 3 outperforming multdastrategies based on in-sample and out-of-sapgsled ranking.

We use May 1968 to April 2010 as the in-sampleqakand May 2010 to December 2015 as the out-of-apggiod. The

numbers in the parentheses are Sharpe ratio diffesefor the in-sample period (first) and out-afapée period (second).
The Sharpe ratios of market portfolio are 0.304@8d2 for the in-sample and out-of-sample peniedpectively. Panel B
reports the critical values estimated using on¢yithsample period data.
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Table 5. Backtesting with small-cap value portfa®the benchmark.

Number  Number of Critical Value
of Outperforming for Sharpe Ratio Top 3 Significantly Outperforming Strategies
Factors Strategies Difference

mvé/mom18/tvol (0.410),mvé/m0m3(t§/tvol| (0.372),

3 10 0.286 mvé/tvol/roe (0.352).
brYmve/mom12/tvol' (0.412), brfY/mvé/mom38/tvol
4 18 0.300 Lo
(0.399),bnYmom38/tvol/ad (0.386).
br/mveé/mom12/tvol/roe’ (0.439),brﬂ“/mvé/mom3@/tvol'/
5 24 0.301 |
ad (O.431),mvé/mom3@/tvo|/ad/roeh(0.414).
er“/mvé/mom1§/tvol'/ag'/roeh (0.489),bn{‘/mvé/mom3@/
6 21 0.296 tvol/ag/ro€ (0.472),brmvé/mom1%/ mom36/tvol/ad
(0.442).
er“/mvé/mom1§/m0m3@/tvol'/ag'/roeh (0.467),
7 14 0.294 er“/mvé/mom3@/tvol'/ag'/roeh/accr‘ (0.430),

er“/mvé/mom1§/tvol'/ag'/roeh/accr‘ (0.391).

er“/mvé/mom1§/m0m?:@/'tvoI'/ag'/roeh/accrJ (0.394),
8 3 0.291 er“/mvé/mom1§/m0m?:@/'tvoI'/ag'/roeh/accrh (0.333),
er“/mvé/mom1?Imom3@/tvol'/ag'/roeh/accrl (0.305).

Notes This table summarizes the backtesting resultswgmeall-cap value portfolio is used as the bencknfaor the last
column, the number in parentheses is the Sharpe ddference between the multi-factor portfoliodasmall-cap value
portfolio (onf/mveé). The Sharpe ratio of small-cap value portfolimir sample period is 0.534.
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Table 6. Results using alternative proxy variable.

Panel A.

étyle Factor Definition

Value ey EBIT / market value of equity

Size mve market value of equity

Momentum wh52 current stock price / 52-week high of stock price

Reversal mome60 cumulative stock returns over the past sixty months

Risk beta CAPM beta from regression using the past 52 wesdtlyrns

Profitability gpm gross profit margin

Growth inv capital expenditure / gross property, plant, andmggent

gig}:&gs accr (EBIT — cash flow from operations) / last year tatssets

Panel B.

Benchmark
Number of Market portfolio Small-cap value portfolio
factors
Critical value outper';lourm:)negr Stfrategies Critical value outper,;lourmit;egr gtfrategies

1 0.236 2 0.163 0
2 0.241 21 0.216 0
3 0.240 95 0.257 2
4 0.235 245 0.273 4
5 0.234 392 0.275 3
6 0.232 410 0.271 1
7 0.230 246 0.260 0
8 0.233 63 0.232 0

Panel C

List of the best 5 strategies

Single Factor wh52" (0.404), ey (0.352),mvé (0.170), betd (0.150), ad (0.147).

ey/mvéiwh53Vbetd (0.758), eyYmvewh53Ybetd/gpnt (0.736),

Multi-Fact
HITRACOl o imvdiwhs ! (0.717), eyiwhs2Vbetd (0.712), eymvéiwhs2Ygpnt (0.702).

Notes This table presents the results with alternafaetor definitions. Panel A provides the definitioh each
variable. Panel B shows the critical values forrBaaatio differences and the number of outperfogrstrategies.
The Sharpe ratios of market portfolio and small-eajue portfolio €y/mve) are 0.366 and 0.407, respectively. In
Panel C, we report the five portfolios with the liegt Sharpe ratio for single factor and multi-fagiortfolios; the
number in parentheses is the Sharpe ratio differeetween the corresponding portfolio and markefgm.
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Table 7. Value-weighted portfolio.

Number  Number of  Critical Value for
of Outperforming  Sharpe Ratio The Top 3 Portfolios with the Highest Sharpe Ratios
Factors Strategies Difference

1 0 0.218 tvol' (0.149) bnf' (0.14),ad (0.132).

2 2 0.276 mvé/tvol' (0.407),tvol/ad (0.302),bnftvol' (0.206).
3 11 0.281 mvé/mom1¥tvol (0. 504),mvé/mom3@/tvo|I (0.463),
' mvé/tvol/roe (0.453).

bn/mveé/mom38/tvol (0.483), brnf/mvé/mom1%/tvol

4 16 0.297 |
(0.477),mvé/momlf/tvol /agJ (0.459).
brﬂ“/mvé/mom1ﬁ‘/tvo|'/ag|J (0.479),bni“/mvé/tvol'/ag'/roeh

5 26 0.292 |
(0.424),bnf/mvé/mom36/tvol/ag (0.421).
bn/mve/mom38/tvol/ag/roe” (0.463),

6 25 0.293 brYmvé/mom1%/ mom38/tvol/ad (0.451),
brﬂ“/mvé/mom3@/tvoI'/ag‘/accrl (0.450).
brﬂ"/mvé/mom3@/tvol'/ag‘/roeh/accrl (0.433),

7 16 0.296 br/mvé/mom1%/mom3é/tvol/ad/roe (0.428),
brﬂ"/mvé/momli‘/tvol'/ag‘/roeh/accrJ (0.422).
brﬂ"/mvé/momli‘/mom3éi/tvoI'/ag‘/roeh/accrJ (0.373),

8 4 0.292 brﬂ"/mvé/momli‘/mom36‘ltvoI'/ag‘/roe'/accrh (0.352),

brﬂ"/mvé/momli‘/momSé‘/tvoI'/ag‘/roeh/accrh (0.343).

Notes This table shows the results when market capétbin is used to determine the portfolio weighteThumber in
parentheses is the Sharpe ratio difference bettheeportfolio and market portfolio.
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Tables not for publication.



Table Al. Each factors is trimmed at 5%.

Number Number of Portfolios Number of Outperforming CriticaI.VaIl.Je of Sharpe
of Factors Strategies Ratio Difference
1 16 1 0.233
2 112 13 0.248
3 448 76 0.231
4 1120 174 0.240
5 1792 302 0.235
6 1792 315 0.235
7 1024 170 0.240
8 256 46 0.240

Note Each factors is trimmed using 5% level beforestarcting the combined score. The critical value of
Sharpe ratio difference is defined in Equationg@jualized Sharpe ratio Market portfolio’s Sharueoris
0.366. The number of portfolios in each univers@giy 2/, wherej is the number of factors used to
construct the multi-factor portfolios.



Table A2. Top 5 outperforming strategies with 5&tmtning.

Number

of Factors Top 5 Strategies

1 tvol' (0.381), ad (0.171), bnf (0.142), ro€" (0.107), mom38 (0.081).

mom1&/tvol (0.433), mvéitvol (0.401), brf¥tvol' (0.397),mom38 /tvol (0.397),

2 tvoll/ag (0.393) .

mvé/mom12 /tvol (0.523), bmmom36/tvol (0.517), er“/mom?:@/agJ (0.503),
mvé/mom386 /tvol (0.496), bm/mom1&tvol (0.480).

er“/momS@/tvoI'/agJ (0.531), mvé/mom38/tvol/acct (0.523),
4 mvé/mom%‘/tvol'/agJ (O.515),er“/mvé/mom1?'/tvo|| (0.514),
brmYmom1%/tvol/ad (0.512).

mvé/momlﬁ‘/tvol'/ag‘/roeh (0.571), brﬁ‘/momS@/tvoI'/ag'/accrJ (0.565),
5 br/mvé/mom3é/tvol/acct (0.551), br/mvé/mom3é/tvol/ag (0.536),
brYmveé/mom1%/mom38/tvol (0.526).

bnYmveé/mom1%/mom38 /tvol'/ad (0.567),
brﬁ“/mvé/mom1f/tvol'/ag'/roeh (0.563),

6 brf/mvé /mom38/tvol/ag/acct (0.563),
brnYmveé/mom1#/mom3é/tvol/acct (0.540),
brﬁ“/mvé/mom3@/tvol'/ag'/roeh (0.535).

brﬁ“/mvé/mom1?/mom3@/tvol'/ag'/roeh (0.558),
brﬁ“/mvé/mom1?/mom3@/tvol'/ag'/accrJ (0.553),
7 brﬁ“/mvé/mom3@/tvol'/ag'/roeh/accrJ (0.535),
brYmvé/ mom1?/tvo|'/ag‘/roeh/accrJ (0.511),
brn/mveé/mom1%/mom38/tvol iroeVacct (0.493).

er“/mvé/mom1§/m0m?:@/'tvoI'/ag'/roeh/accrJ (0.540),
br/mveé/mom12 /mom3d§‘/tvoI'/ag‘/roe'/accrl (0.488),
8 er“/mvé/mom12/mom3@/tvol'/ag'/roeh/accrl (0.464),
er“/mvé/mom1§/m0mS@ItvoIh/ag‘/roeh/accrJ (0.433),
er“/mvé/mom1f/mom3@/tvol'/ag'/roe'/accrh (0.424).

Note The number in parentheses is the portfolio’s Bhaatio difference.



Table A3. Portfolio with fixed number of stocks.

Number of factors 1 2 3 4 5 6 7 8

Critical value 0283 0.331 0.298 0.294 0298 0.280.291 0.281
S=50  No. of outperforming

strategies 1 7 37 84 114 142 74 24

Critical value 0270 0.272 0.271 0274 0267 0.268.259 0.252
=100 No. of outperforming 11 45 88 161 183 107 30

strategles

Critical value 0243 0.254 0.249 0251 0245 0.248.238 0.232
5=200 No. of outperforming 1 12 51 101 197 212 127 35

strategles

Critical value 0238 0.244 0.237 0239 0236 0230222 0216
S=300 No. of outperforming 21 51 108 216 230 154 42

strategles

Note The portfolios are score-weighted of fixed numbelecteds stocks and rebalanced every year.



