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Abstract

The purpose of this paper is to examine the performance of hedge funds from the effi cient

diversification point of view for economically important investors, which is defined as in

Tsetlin et al. (2015). We adopt the generalized almost second-degree stochastic dominance

(GASSD) rule proposed by Tsetlin et al. (2015). The rule includes second-degree stochastic

dominance as a special case and is a consensus rule for all economically important investors.

We establish statistical estimations and tests for the GASSD effi ciency of a given portfolio

relative to all possible portfolios formed from a given set of assets. We find that for all

economically important investors, adding hedge funds to a diversified portfolio can improve

effi ciency. The results explain the popularity of hedge funds in practice.
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1 Introduction

In the last 20 years, hedge funds have become one of the key investment vehicles and sources of

capital in the world. Their option-based performance, active trading and diversified strategies

have attracted a large amount of money from global investors and also the attention of academia.

Several studies document the ability of hedge funds to deliver abnormal returns (Cao et al. 2013;

Chen and Liang 2007; Hsu et al. 2014) and also many probe into the causes of their superior

performance (Bali et al. 2011, 2012 and 2013; Olmo and Sanso-Navarro, 2012).

Following the literature analyzing the performance of hedge funds, our paper answers the

following important question: Can investing in hedge funds improve stochastic dominance ef-

ficiency? In the literature, several papers have adopted parameter approaches to evaluate the

performance of hedge funds.1 However, the parameter approaches usually require strong assump-

tions on either the return distributions or investors’utility functions. Thus, a parameter-free

approach such as stochastic dominance is more desirable to characterize the effi ciency of hedge

funds.

To check whether adding one type of security can improve stochastic dominance effi ciency,

one commonly used rule is the second-degree stochastic dominance (SSD) criterion.2 According

to Post (2003) and Post and Versijp (2007, PV hereafter), an asset allocation is recognized as

an SSD effi cient portfolio as long as there is at least one non-satiable (u′ ≥ 0) and risk-averse

(u′′ ≤ 0) investor considering it to be an optimal choice.3 However, the SSD rule is the criterion

for all non-satiable and risk-averse investors, including the agents with pathological preferences

as pointed out by Leshno and Levy (2002). Thus, a portfolio will be classified as SSD effi cient

even if only investors with pathological preferences favor it.

1For example, Agarwal and Naik (2004) adopted a mean-conditional value-at-risk framework to characterize
the systematic risk of hedge funds. Kosowski, Naik, and Teo (2007) used alpha in the seven factor model proposed
by Fung and Hsieh (2004) to demonstrate the performance of hedge funds.

2The theory of stochastic dominance is developed by Hadar and Russell (1969), Hanoch and Levy (1969),
Rothschild and Stiglitz (1970), and Whitmore (1970). To derive tractable tests for stochastic dominance effi ciency,
Bawa et al. (1985) utilize the convex stochastic dominance condition constructed by Fishburn (1974) to identify the
members of optimal and dominated sets when more than two choice alternatives are compared. Post (2003) derives
necessary and suffi cient tests for the SSD effi ciency by considering full diversification across the choice alternatives.
He also suggests that these tests could be generalized to third-degree stochastic dominance effi ciency. Parallel
to Post (2003), Kuosmanen (2004) establishes tests for first-degree stochastic dominance and SSD measures to
identify an effi cient set with full diversification.

3u′ and u′′ respectively denote the first and the second derivatives of a utility function u.
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Let us use an example to demonstrate that most investors could classify one portfolio as an

ineffi cient investment allocation, whereas the SSD rule recognizes it as an effi cient one. Assume

that, in the feasible set, there are only two exclusive investment outcomes X and Y . X yields

0 with a probability of 10−6 and a million dollars with a probability of 1 − 10−6, and Y yields

one dollar with certainty. Note that neither X nor Y dominates the other based on the SSD

rule. Thus, both X and Y are considered to be SSD effi cient. However, it is obvious that

most investors would prefer X to Y . Thus, from most investors’point of view, Y should be

classified as a dominated portfolio. In other words, the SSD rule might leave us with too many

effi cient allocations which include the dominated portfolios from most investors’point of view.

Specifically, for the purpose of our paper, even if we find that investing in hedge funds is effi cient

for risk-averse investors, people might wonder whether only investors with extreme preferences

would invest in hedge funds since hedge funds extensively use derivatives, short selling, and

leverage.

Thus, instead of SSD rules, we adopt the (ε1, ε2)-generalized almost second-degree stochastic

dominance ((ε1, ε2)-GASSD) rules proposed by Tsetlin et al. (2015) to test the effi ciency of a

given portfolio. Note that Tsetlin et al. (2015) show that (ε1, ε2)-GASSD is a decision criterion

to rank distributions for all economically important investors with u′ > 0, u′′ < 0 and the ratios

of the supremum to infimum of u′ and that of −u′′ are respectively bounded by 1
ε1
− 1 and

1
ε2
− 1, where both ε1 and ε2 are constants between 0 and 0.5. Using the above example, we

can show that X dominates Y in terms of (ε1, ε2)-GASSD with reasonable ε1 and ε2. Thus,

for economically important investors, the (ε1, ε2)-GASSD rule could eliminate many dominated

portfolios which are identified as effi cient portfolios in terms of SSD.

Our paper is related to Bali et al. (2013) and Denuit et al. (2014). Both of them also

employ the concept of almost stochastic dominance to analyze the performance of hedge funds.

Bali et al. (2013) employed both ε1-almost first-degree stochastic dominance and ε2-almost SSD

rules proposed by Leshno and Levy (2002) to evaluate the performance of hedge funds. Our

paper differs from theirs in two ways. First, Bali et al. (2013) used pairwise comparison and

showed that different types of hedge funds significantly dominate the U.S. equity market and

the U.S. Treasury market. We consider full diversification across the choice alternatives rather
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than pairwise comparisons to examine the effi ciency of hedge funds. Second, Bali et al. (2013)

adopted the rule of ε2-almost SSD proposed by Leshno and Levy (2002). Tzeng et al. (2013)

showed that the above rule is problematic and re-defined ε2-almost SSD. Our paper uses the

newly-developed (ε1, ε2)-GASSD rules generalized by Tsetlin et al. (2015) which includes the

correct ε2-almost SSD proposed by Tzeng et al. (2013) as a special case.

Denuit et al. (2014) show that the 100% hedge fund portfolio is effi cient via their proposed

almost marginal conditional stochastic dominance criterion. Our paper is different from theirs

in two ways. First, Denuit et al. (2014) only used linear programming to identify an effi cient

allocation. In our paper, we not only provide an algorithm to identify effi cient allocations but

also take a step forward to propose a statistical test. Second, the decision criterion is different.

The almost marginal conditional stochastic dominance criterion in Denuit et al. (2014) is a rule

for investors with u′ > 0, u′′ < 0 and confined −u′′. On the other hand, the (ε1, ε2)-GASSD rule

cares about investors with u′ > 0, u′′ < 0 and both of their u′ and −u′′ are confined.

In this paper, we introduce a statistical test for the (ε1, ε2)-GASSD effi ciency of a given

portfolio relative to all possible portfolios formed from investment sets. Our test leverages on the

multivariate statistics framework proposed by PV, who develop SSD effi ciency tests with superior

statistical power properties. We generalize PV’s test by adding the preference constraints and

derive the corresponding statistics using the optimization method. Without specific assumptions

regarding the underlying distribution or functional form specification of utility preferences, our

test makes the stochastic dominance rule applicable to any kinds of strategies or investments,

especially for hedge fund portfolios.

The data are obtained from the Hedge Fund Research database. After following the screening

procedures proposed in the literature, the final sample includes 12, 816 hedge funds over the

period from January 1994 to December 2011. These hedge funds are further classified into seven

broad investment categories: Emerging Markets, Equity Hedge, Event Driven, Fund of Funds

(FOF), Macro, Market Neutral, and Relative Value.

To examine whether adding hedge funds can improve effi ciency, we first assume that the

investment environment only includes the S&P 500 index and the 1-year Treasury Bond. We

identify some (ε1, ε2)-GASSD effi cient allocations in this two-asset investment environment. We
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then further examine whether those portfolios become ineffi cient after adding the third asset:

hedge funds. The results show that the effi cient portfolios which consist only of stocks and bonds

become (ε1, ε2)-GASSD ineffi cient if Equity Hedge, Event Driven, Macro, Market Neutral, or

Relative Value hedge funds are added to the investment universe. The findings suggest that

adding the above types of hedge funds could indeed improve effi ciency for most economically

important investors.

In addition, by assuming that the investment environment includes three assets: hedge

funds, stocks and bonds, we find that a 100% hedge fund portfolio cannot be rejected as (ε1, ε2)-

GASSD effi cient portfolios for all reasonable ε1’s and ε2’s except for Event Driven hedge funds.

These results complement the findings of Bali et al. (2013) where they demonstrated that

most hedge funds pairwisely dominate the S&P500 index. Our findings show that, from the

effi cient diversification point of view, most of the 100% hedge fund portfolios are effi cient. The

empirical evidence also shows that although adding Emerging Market and FOF hedge funds to

the investment environment cannot make the effi cient portfolios which contain only stocks and

bonds become ineffi cient, a 100% Emerging Market or FOF hedge fund portfolio is an (ε1, ε2)-

GASSD effi cient portfolio. We further find that although adding Event Driven hedge funds can

improve effi ciency, a 100% Event Driven hedge fund portfolio is not (ε1, ε2)-GASSD effi cient.

Furthermore, by employing Equity Hedge and Market Neutral hedge funds as examples,

our empirical evidence shows that many effi cient portfolios include positive investment weights

on hedge funds. Our empirical results support the findings in reality in that many investors

hold hedge funds in their asset allocations. The findings further show that (ε1, ε2)-GASSD rules

could substantially reduce the set of effi cient portfolios. Specifically, there are 5, 145 SSD effi cient

portfolios when Equity Hedge is considered. The number of effi cient portfolios decreases to 663

when ε1 = 0.059 and ε2 = 0.022, which is the threshold suggested by the literature.
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2 Generalized Almost Stochastic Dominance

2.1 GASSD and SSD

This section reviews the definition of (ε1, ε2)-GASSD provided in Tsetlin et al. (2015). Let

u(w) : R → P denote an investor’s von Neumann-Morgenstern utility function, where w is the

wealth level and P is a nonempty, closed, and convex subset of R. Define the following utility

classes:

U2(0, 0) =
{
u(w)

∣∣u′(w) ≥ 0 and u′′(w) ≤ 0
}
,

and U2(ε1, ε2) =

u ∈ U2(0, 0)

∣∣∣∣∣∣∣
sup {u′(w)} ≤ inf {u′(w)}

(
1
ε1
− 1
)

sup {−u′′(w)} ≤ inf {−u′′(w)}
(
1
ε2
− 1
)
.

 , (1)

where εi ∈
(
0, 12
)
, i = 1, 2. Thus, U2(0, 0) is the set containing all non-satiable and risk-averse

preferences, whereas U2(ε1, ε2) is a subset of U2(0, 0) which contains the preferences with confined

u′(w) and u′′(w). When εi decreases, i = 1, 2, the set of U2(ε1, ε2) becomes larger. If both ε1

and ε2 approach zero, then U2(ε1, ε2) becomes U2(0, 0).

One example in the set of U2(0, 0) is

u(w) =

 w if w ≤ 1

1 otherwise.
(2)

For the investors with the above utility function, one dollar generates the same utility level as

one million dollars. The preference is extreme and pathological. In the example given in the

Introduction, an agent with this utility function would prefer Y to X since the expected utility

of Y is one and that of X is less than one. To exclude this type of extreme preference, Leshno

and Levy (2002) proposed considering economically important agents that have bounded u′ and

−u′′. The utility function in (2) is excluded in U2(ε1, ε2) for positive ε1 and/or ε2.

Let F and G denote two cumulative distribution functions (CDFs). The definitions of SSD

and (ε1, ε2)-GASSD are as follows:
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Definition 1 F dominates G in terms of SSD if and only if EF (u) ≥ EG (u) for all u ∈ U2(0, 0).

Definition 2 F dominates G in terms of (ε1, ε2)-GASSD if and only if EF (u) ≥ EG (u) for all

u ∈ U2(ε1, ε2).

2.2 GASSD Effi ciency

This paper examines (ε1, ε2)-GASSD effi ciency in a standard static portfolio choice problem

with the following assumptions:4

Assumption 1 Investors with u ∈ U2(ε1, ε2) choose investment portfolios to maximize the ex-

pected utility, which is a function of the return on their portfolios. Without loss of generality,

we assume that the initial wealth of all investors is one unit.

Assumption 2 There are N risky assets and a riskless asset in the investment universe. In-

vestors may diversify between the assets. Let λ ∈ RN be a vector of portfolio weights, which

could be either positive or negative. If λ>1T = 1, then all wealth is invested in risky assets. Let

τ ∈ RN denote the evaluated portfolio.

Assumption 3 The excess return vector x ∈ RN is a random vector which follows a continuous

joint CDF G : RN → [0, 1]. R is a nonempty, bounded, and convex subset of R. Let xf denote

the risk-free rate. Thus, the final wealth of investing in τ is x>τ + xf . We assume that the

mean vector

α(u) =

∫
u′(x>τ + xf )xdG(x)

is finite. Futher assume that the covariance matrix

Ω(u) =

∫
(u′(x>τ + xf )x− α(u))(u′(x>τ + xf )x− α(u))>dG(x)

is finite and positive-definite for all u ∈ U2(ε1, ε2).
4Note that these assumptions are the same as in PV except that they assume u ∈ U2(0, 0), whereas we assume

u ∈ U2(ε1, ε2).
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Based on the above assumptions, the investors’optimization problem is

max
τ∈RN

∫
u(x>τ + xf )dG(x)

and the first-order condition is

α(u) =

∫
u′(x>τ + xf )xdG(x) = 0N .

Since u is increasing and concave, the second-order condition holds and the above first-order

condition is the necessary and suffi cient condition for the optimization problem.

We define (ε1, ε2)-GASSD effi ciency as follows:

Definition 3 The evaluated portfolio τ is (ε1, ε2)-GASSD effi cient if and only if α(u) = 0N for

some u ∈ U2(ε1, ε2). Alternatively, τ is (ε1, ε2)-GASSD ineffi cient if and only if α(u) 6= 0N for

all u ∈ U2(ε1, ε2).

When α(u) = 0N for some u ∈ U2(ε1, ε2), it means that the evaluated portfolio τ is the

optimal choice of these investors. From Definition 2, we know that there is no portfolio domi-

nating τ via (ε1, ε2)-GASSD. Thus, τ could be viewed as satisfying (ε1, ε2)-GASSD effi ciency.

On the other hand, when α(u) 6= 0N for all u ∈ U2(ε1, ε2), i.e., τ is not optimal for all in-

vestors, it means that there exist other portfolios which can generate higher expected utility

than τ . In other words, there are other portfolios that dominate τ via (ε1, ε2)-GASSD. Thus, τ

is (ε1, ε2)-GASSD ineffi cient. In addition, from the definition of U2(ε1, ε2) in Equation (1), we

know that

U2(ε1, ε2) ⊆ U2(θ1, θ2) for all ε1 ≥ θ1 and ε2 ≥ θ2.

Therefore, if the evaluated portfolio τ is (ε1, ε2)-GASSD effi cient, then it is also (θ1, θ2)-GASSD

effi cient.
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3 Statistical Estimation and Tests

This section first reviews the multivariate test for SSD effi ciency proposed by PV since our

test is an extension of theirs. Then, we will formally establish the multivariate test for (ε1, ε2)-

GASSD effi ciency. To proceed, empirical distributions are employed for the test and the following

assumption is imposed:

Assumption 4 The observations denoted by X = (x1, . . . ,xT ), with xt = (x1t, . . . , xNt)
> are

serially independently and identically distributed (IID) random draws from the CDF. Note that

the timing of the draws is not important. Thus, we label the observations by their ranking with

respect to the evaluated portfolio, i.e., x>1 τ < x
>
2 τ < . . . < x>Tτ .

3.1 PV’s Multivariate Test

PV constructed the SSD effi ciency test based on the first-order conditions for portfolio opti-

mization. Since risk aversion is assumed, the first-order conditions are necessary and suffi cient

for portfolio optimization. They argued that the evaluated portfolio τ ∈ RN is SSD effi cient if

and only if the first-order condition holds for some u ∈ U2(0, 0).

Let β = (β1, β2, ..., βT )> denote a gradient vector, ∇u of a utility function, u, where

∇u = (u′(x>1 τ + xf ), u′(x>2 τ + xf ), ..., u′(x>Tτ + xf ))>. Let B2(0, 0) denote a collection of β’s

such that

B2(0, 0) =
{
∇u

∣∣u ∈ U2(0, 0) and T−1∇u>1T = 1
}

=

{
β ∈ RT+

∣∣∣∣∣βt−1 ≥ βt, t = 2, ..., T and
T∑
t=1

βt = 1

}
. (3)

PV impose a standardization in B2(ε1, ε2) so that
∑T

t=1 βt = 1. Imposing this is mainly a

computational issue and is without loss of generality. Before we summarize PV’s test for the

SSD effi ciency of an evaluated portfolio τ ∈ RN , let us define more notation. For a given β,
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define α̂(β) and Ω̂(β) as

α̂(β) = T−1Xβ

Ω̂(β) = T−1(X ◦ (1Nβ
>)− α̂(β)1TN )(X ◦ (1Nβ

>)− α̂(β)1TN )>

PV define the test statistic as

J2 ≡ min
β∈B2(0,0)

T−2α̂(β)>Ω̂−1(β)α̂(β) (4)

We summarize PV’s statistical properties of the J2 in the following theorem:

Theorem 1 SSD Test Statistic (PV) Suppose that Assumptions 1-4 hold. Then

1. under the null hypothesis that the evaluated portfolio τ is SSD effi cient,

Pr [J2T > c |H0 ] ≤ 1− χ2N (c)

where χ2N denotes the CDF of a Chi-squared distribution with N degrees of freedom, and

2. under the alternative hypothesis that the evaluated portfolio τ is not SSD effi cient, Pr [J2T > c |H1 ]→

1 for any c ∈ R.

The first part of Theorem 1 shows that PV’s multivariate test for the SSD effi ciency of

portfolio τ can control the size well asymptotically when the critical value is obtained from

Chi-squared distributions. The second part of Theorem 1 shows that PV’s multivariate test is

consistent in that if portfolio τ is not SSD effi cient, we will reject the null hypothesis with a

probability approaching one.

3.2 Proposed Test for GASSD Effi ciency

We generalize PV’s multivariate test to construct the (ε1, ε2)-GASSD effi ciency test. To focus

on the economically important investors, we consider the utility set B2(ε1, ε2) instead of B2(0, 0),
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where B2(ε1, ε2) denotes a collection of β’s such that

B2(ε1, ε2) =
{
∇u

∣∣u ∈ U2(ε1, ε2) and T−1∇u>1T = 1
}

=

β ∈ B2(0, 0)

∣∣∣∣∣∣∣
β1 ≤ βT

(
1
ε1
− 1
)
,

γ ≤ βt−1−βt
x>t τ−x>t−1τ

≤ γ
(
1
ε2
− 1
)
, t = 2, ..., T and γ > 0

 . (5)

B2(ε1, ε2) is the set of all gradient vectors that are admissible with respect to U2(ε1, ε2). To

be specific, β ∈ B2(0, 0) requires that βt−1 ≥ βt, t = 2, ..., T . Therefore, β1 ≤ βT

(
1
ε1
− 1
)
can

be rewritten as

sup {βt} ≤ inf {βt}
(

1

ε1
− 1

)

and represents the first condition in the set of U2(ε1, ε2) as shown in Equation (1). The variable

βt−1−βt
x>t τ−x>t−1τ

represents −u′′. The condition γ ≤ βt−1−βt
x>t τ−x>t−1τ

≤ γ
(
1
ε2
− 1
)
, t = 2, ..., T and γ > 0

means that γ ≡ inf{ βt−1−βt
x>t τ−x>t−1τ

} and

sup

{
βt−1 − βt

x>t τ− x>t−1τ

}
≤ inf

{
βt−1 − βt

x>t τ− x>t−1τ

}(
1

ε2
− 1

)
,

which is the second condition in the set of U2(ε1, ε2) as shown in Equation (1).

The test statistic of our test is defined as

J2(ε1, ε2) ≡ min
β∈B2(ε1,ε2)

T−2α̂(β)>Ω̂−1(β)α̂(β) (6)

Similar to Theorem 1 for PV’s multivariate test, we have the following results for our test.

Theorem 2 Suppose that Assumptions 1-4 hold. Then

1. under the null hypothesis that the evaluated portfolio τ is (ε1, ε2)-GASSD effi cient,

Pr [J2(ε1, ε2)T > c |H0 ] ≤ 1− χ2N (c)

where χ2N denotes the CDF of a Chi-squared distribution with N degrees of freedom, and
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2. under the alternative hypothesis that the evaluated portfolio τ is not (ε1, ε2)-GASSD,

Pr [J2(ε1, ε2)T > c |H1 ]→ 1 for any c ∈ R.

Proof. Please see the Appendix.

Since B2(ε1, ε2) ≡ B2(0, 0) when both ε1 and ε2 are zero, our test generalizes PV’s test.

By varying the preference parameters ε1 and ε2, we can test whether adding hedge funds is

effi cient for all risk-averse investors. We can also test whether adding hedge funds is effi cient for

economically important investors who belong to the set of U2(ε1, ε2).

3.3 Computational Issue

The test statistic J2(ε1, ε2) is solved by standard mathematical programming techniques:

J2(ε1, ε2) ≡ min
β∈B2(ε1,ε2)

T−2(Xβ)>Ω̂−1(β)(Xβ)

s.t. β1 ≤ βT

(
1

ε1
− 1

)
γ ≤

βt−1 − βt
x>t τ− x>t−1τ

≤ γ
(

1

ε2
− 1

)
, t = 2, ..., T and γ > 0.

Since Ω̂−1(β) is a complicated function of model variables, PV deal with the problem by using

an iterative approach. They give an initial β for a positive definite weighted matrix, and then

use this weighted matrix to obtain the optimal solution for β. The procedure is repeated twice

in PV to obtain the statistics. Instead of using an iterative approach, we compute the statistics

directly. Our approach has the following advantages. First, the conclusion of the test statistic

will not be affected by the chosen number of iterations. Second, the quadratic objective function

might go to infinity because the weighted matrix generated from the last covariance matrix of

returns is singular. Therefore, the iterative approach might reject the effi cient portfolio due to

numerical issues in some cases. By computing the minimum value, we can avoid this potential

bias.
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4 Empirical analysis

We proceed with tests to analyze the (ε1, ε2)-GASSD effi ciency of the portfolio composed of

hedge funds and the U.S. equity and bond markets. We collect data from the Hedge Fund

Research database and refer to the literature to eliminate survivorship bias, back-fill bias and

multi-period sampling bias. The initial hedge funds contain a total of 11, 867 defunct funds

and 6, 853 live funds over the period from January 1994 to December 2011. After the screening

procedure, we leave 12, 816 hedge funds in our sample including 7, 443 dead funds and 5, 373 live

funds. As in Denuit et al. (2014), these individual hedge funds are grouped into seven broad

investment categories: Emerging Markets, Equity Hedge, Event Driven, FOF, Macro, Market

Neutral, and Relative Value. The performance of the U.S. equity market and the performance

of short-term U.S. Treasury securities are represented by the S&P 500 index returns and the

1-year Treasury Bond returns, respectively.

Table 1 reports the summary statistics of the portfolios over the entire study period under a

monthly base. Six out of seven hedge fund investment styles have higher average returns than

the S&P 500 index. Among these six hedge funds, five of them have lower standard deviations

than the S&P 500 index. They are: Equity Hedge, Event Driven, Macro, Market Neutral, and

Relative Value hedge funds. According to the Jarque-Bera (JB) statistics, all of the hedge funds,

the S&P 500 index and the 1-year Treasury Bond returns indicate significant departures from

normality at the 10% significance level.

[Insert Table 1 here]

4.1 Adding hedge funds

We first answer our main research question by examining whether adding hedge funds to the

investment universe can make the effi cient portfolios in a world without hedge funds become

ineffi cient. Thus, we first test the effi ciency of 11 portfolios that consist of 100% stocks; 90%

stocks and 10% bonds; 80% stocks and 20% bonds;...; and 100% bonds by assuming that the

investment universe only consists of stocks and bonds.

Regarding the values of ε1 and ε2, several values are considered. By conducting experiments
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with a sample of 200 respondents, Levy et al. (2010) suggest that ε1 is 0.059.5 Following their

paper, Huang et al. (2015) used a sample of 223, and find that the experimental estimation ε1 is

lower than 0.053 and the estimated ε2 is 0.022. Thus, we use 0.059 and 0.022 as the benchmarks

of ε1 and ε2. In addition, we also consider different levels of ε1 and ε2 for additional checks.

Note that when both ε1 and ε2 are 0, (ε1, ε2)-GASSD effi ciency reduces to SSD effi ciency in PV.

For the sake of brevity, we tabulate only the results with ε1 = 0, and 0.059, and ε2 = 0, 0.01,

0.02, 0.022 and 0.03 in Table 2. Panel A of Table 2 reports J2(ε1, ε2) for these 11 portfolios. It

indicates that all these 11 portfolios are effi cient portfolios for all considered values of the ε1’s

and ε2’s. In other words, even if the investors with pathological preferences are excluded, these

portfolios are still effi cient when the investment universe only contains stocks and bonds.

We then relax the assumption and assume that the investment universe consists of three

assets: hedge funds, stocks and bonds. Since there are seven types of hedge funds, we examine

seven types of investment set: each set includes the S&P500, Treasury Bonds and one hedge

fund categorized according to our classification.6 The effi ciency of the above 11 portfolios is

examined and the results are presented in the rest Panels of Table 2.

We find that when investors can include either Equity Hedge, Event Driven, Macro, Market

Neutral or Relative Value hedge funds in these portfolios, most of these 11 portfolios become

ineffi cient.7 In other words, adding these hedge funds to the diversified portfolios can indeed

improve effi ciency. On the other hand, when adding Emerging Market or FOF hedge funds to

the investment universe, most of these 11 portfolios are still effi cient.

In addition, Table 2 shows that our empirical finding is consistent with the theoretical pre-

diction for ε1 ≥ θ1 and ε2 ≥ θ2 that: if the null hypothesis that the evaluated portfolio τ is

(ε1, ε2)-GASSD effi cient is not rejected, then the null hypothesis that the evaluated portfolio τ

is (θ1, θ2)-GASSD effi cient is not rejected either.

[Insert Table 2 here]

5Levy et al. (2010) also suggest ε2 as 0.032. However, the decision rule regarding ε2 adopted in their paper
has been corrected by Tzeng et al. (2013). Thus, we do not use 0.032 as the benchmark of ε2.

6Since many markets impose conditions and/or restrictions for short selling strategies, we only consider positive
portfolio weights on each asset for simplicity.

7Note that the effi cient portfolios which contain only stock and bonds are still SSD effi cient but not GASSD
effi cient if Equity Hedge, Market Neutral or Relative Value hedge funds are added to the investment universe.
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4.2 The effi ciency of 100% hedge fund portfolios

We then examine whether a 100% hedge fund portfolio is (ε1, ε2)-GASSD effi cient when the

investment universe consists of stocks, hedge funds, and bonds. Panel A in Table 3 presents

J2(ε1, ε2) for the 100% hedge fund portfolios. It indicates that except for Event Driven hedge

funds, a 100% hedge fund portfolio cannot be rejected as (ε1, ε2)-GASSD effi cient portfolios for

all the reasonable ε1’s and ε2’s. These results complement the findings of Bali et al. (2013), who

demonstrated that, for a one-year investment horizon, most hedge funds are dominant assets in

terms of ASSD with ε2 = 0.032 compared to the S&P500 index. Our findings show that, from

the effi cient diversification point of view, most of the 100% hedge fund portfolios are effi cient

not only for risk-averse investors but also for economically important risk-averse investors.

It is worth noting that even though adding Emerging Market and FOF hedge funds to the

investment environment cannot make the effi cient portfolios which contain only stocks and bonds

become ineffi cient as shown in Table 2, Table 3 indicates that a 100% Emerging Market or FOF

hedge fund portfolio is an (0.059, 0.022)-GASSD effi cient portfolio. On the other hand, although

adding Event Driven hedge funds can improve effi ciency as reported in Table 2, Table 3 shows

that a 100% Event Driven hedge fund portfolio is not (0.059, 0.022)-GASSD effi cient.

Furthermore, Panels B and C in Table 3 present J2(ε1, ε2) for the 100% S&P500 portfolios

and the 100% bond portfolios, respectively. Panel B of Table 3 indicates that except in the case

where Macro hedge funds are considered, the 100% S&P500 portfolio is SSD effi cient. However,

it is ineffi cient for most economically important investors except in the case where Emerging

Market or FOF hedge funds are included. Panel C demonstrates that when examining the

GASSD effi ciency, a 100% Treasury Bond portfolio is generally a dominated allocation except

that FOF is included in the investment environment.

[Insert Table 3 here]

4.3 The contents of effi cient portfolios

Finally, we examine whether there exist many effi cient portfolios investing a certain portion

in hedge funds when the investment environment includes hedge funds, stocks and bonds. To

15



illustrate the results, we only demonstrate the cases where Equity Hedge or Market Neutral

hedge funds are included. The results are shown in Figures 1 and 2, respectively. In each figure,

the x-axis denotes the weights of the hedge funds, and the y-axis denotes the weights of the S&P

500 index. The lower triangle area consists of all possible portfolios of these three assets under

the constraint that the sum of the investment weights on these three assets is equal to one. We

use a grid with step size 0.01 for the portfolio weights. The blue dots are portfolios that passed

the (ε1, ε2)-GASSD tests at the 5% significance level, while the remaining portfolios failed the

test and are classified as (ε1, ε2)-GASSD ineffi cient.

Panel A in Figure 1 shows the effi cient allocations with ε1 = 0 by considering Equity Hedge,

whereas Panel B shows the effi cient allocations with ε1 = 0.059. These figures indicate that

for considered levels of ε1 and ε2, the effi cient allocations contain positive weights on Equity

Hedge. Specifically, when ε1 = 0.059 and ε2 = 0.022, the effi cient portolios contain at least a

10% holding of Equity Hedge. The results demonstrate that even risk-averse investors without

pathological preferences would invest positive weights on hedge funds. These findings partly

explain the popularity of hedge funds. In addition, Figure 1 also shows that (ε1, ε2)-GASSD

rules could substantially reduce the set of effi cient portfolios. Specifically, we find that there are

5, 145 SSD effi cient portfolios when Equity Hedge is considered. As shown in Figure 1, when

either ε1 or ε2 becomes positive, the number of effi cient portfolios decreases. For example, when

using ε1 = 0.059 and ε2 = 0.022, the number of effi cient portfolios decreases to 663.

Similar results can be drawn from Figure 2. When setting ε1 = 0.059 and ε2 = 0.022, all

of the effi cient portolios contain at least a 10% holding of Market Neutral hedge funds. Fur-

thermore, 5, 139 portfolios are SSD effi cient, whereas only 1, 831 portfolios are (ε1 = 0.059, ε2 =

0.022)-GASSD effi cient.

[Insert Figures 1 and 2 here]

5 Conclusion

In this paper, we have established new tests for portfolio allocation by using GASSD criteria.

The SSD effi ciency test proposed by Post and Versijp (2007) is a special case of ours. By
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applying the tests, we found that adding hedge funds to a diversified portfolio can improve

effi ciency. Specifically, we found that when the investment universe includes hedge funds, the

effi cient portfolios which consist only of stocks and bonds become (ε1, ε2)-GASSD ineffi cient

when certain types of hedge funds are added in the investment universe. Our results have further

shown that except for Event Driven hedge funds, 100% hedge fund portfolios are effi cient for most

risk-averse investors. Furthermore, our empirical evidence has indicated that several effi cient

portfolios in terms of (ε1, ε2)-GASSD include positive investment weights on hedge funds.
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Appendix A Proof of Theorem 2

For any u ∈ U2(0, 0), define α̂(u) = T−1X∇u and Ω̂(u) = T−1(X ◦ (1>N∇u)−α̂(u)1TN )(X ◦ (1>N∇u)−

α̂(u)1TN )>. It is straightforward to see that the test statistic of our test is equivalent to

J2(ε1, ε2) ≡ min
β∈B2(ε1,ε2)

T−2(Xβ)>Ω̂−1(β)(Xβ) = min
u∈UM2 (ε1,ε2)

α̂(u)>Ω̂−1(u)α̂(u). (A.1)

where

UM2 (ε1, ε2) =

u
∣∣∣∣∣∣∣∣∣∣

0 < u′, −M < u′′ < 0,

sup {u′} ≤ inf {u′}
(
1
ε1
− 1
)
, sup {−u′′} ≤ inf {−u′′}

(
1
ε2
− 1
)

and the smallest eigenvalue of Ω(u) is bounded away from zero.


Note that imposing u′ < M and assuming that the smallest eigenvalue of Ω(u) is bounded away

from zero will not change the problem since such normalization is without loss of generality.

The proof for the first part of Theorem 2 is identical to Theorem 2 of PV, so we omit it. To

show the second part, note that under the alternative, we have

min
u∈UM2 (ε1,ε2)

α(u)>Ω−1(u)α(u) = δ > 0.

Recall that α̂(u) = T−1X∇u. Note that by the Arzelà-Ascoli Theorem, e.g., Theorem 6.2.61

of Corbae, Stinchcombe and Zeman (2009), {xtu′(xtτ )| u ∈ UM2 (ε1, ε2)} is a compact set with

respect to the sup-norm. Therefore, it satisfies Pollard’s entropy condition as in Andrews (1994).

Then it will satisfy the uniform law of large numbers such that supu∈UM2 (ε1,ε2)
‖α̂(u)−α(u)‖ p→ 0.

Similarly, supu∈UM2 (ε1,ε2)
‖Ω̂(u)− Ω(u)‖ p→ 0. This is suffi cient to show that

min
u∈UM2 (ε1,ε2)

α̂(u)>Ω̂−1(u)α̂(u)
p→ δ > 0.

Therefore, TJ2(ε1, ε2) diverges to positive infinity at rate T . This is suffi cient to show the second

part. �
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