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Abstract 
 
 

Evaluating portfolios based on numerous combinations of factors using individual 

backtesting method could suffer serious data mining bias and lead to spurious significant 

findings. Accordingly, we employ a multiple testing method to examine the significance 

of Sharpe ratios of multi-factor portfolios. Our empirical results show that even after 

adjusting for data mining bias, the stock picking strategies with certain combined firm 

characteristics could obtain significantly better risk-scaled returns than both value-

weighted index and small-cap value portfolio. The superior performance of multi-factor 

portfolios is more stable than single factor portfolios over different subsamples. Moreover, 

the outperforming multi-factor strategies are robust to alternative definitions of factors. 
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Introduction 

Combining multiple factors to build winning stock picking strategy is an appealing idea 

for a growing and large number of investors. Unfortunately, since there are numerous 

possible combinations of factors, the backtesting of multi-factor strategies based on 

individual hypothesis testing framework could lead to serious data mining bias. That is, if 

the researcher uses 5% significance level to test each individual hypotheses with the same 

historical datasets, she could eventually find a spuriously outperforming strategy after a 

large number of trials. 

To address the data mining bias problem, we apply bootstrap-based multiple testing 

method to evaluate the performance of multi-factor investment strategies, which have been 

quite popular in recent years. The ETFs under the name of smart beta or multi-factor have 

attracted over $60 billion fund inflows each year since 2013 and account for one-fifth of 

the $1.7 trillion US ETF total assets  in 2015 (Wigglesworth 2016). Kahn and Lemmon 

(2016) even state that the smart beta product innovation has posed a threat to the traditional 

active fund industry. While the current majority of smart beta ETFs adopt an 

uncomplicated rule based on the single factor such as value strategy, there has been a trend 

for ETF providers to launch products that combine multiple factors. This type of ETFs has 

been dubbed smart beta 2.0, smarter beta, or multi-factor funds (Authers 2015; Noblett 

2015; Wigglesworth 2016).   

The concern for data mining bias is not new. McQueen and Thorley (1999) discuss the 

potential data mining pitfalls in testing the portfolio performance of quantitative stock 

screening. Bailey and de Prado (2014) and Harvey and Liu (2014) provide the statistical 

framework to adjust the Sharpe ratio for evaluating trading strategies in general. Novy-

Marx (2016) shows that the t-statistics of mean returns could be severely inflated when the 

portfolio is constructed by combining the best strategies.  

The contribution of this study is twofold. First, we apply the data-driven approach by 

Hsu et al. (2014) to empirically examine the performance of the multi-factor strategies. The 

aforementioned studies focus on adjusting the backtesting to mitigate data mining bias but 

do not conduct an empirical investigation on multi-factor strategies. In contrast, this study 
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answers the question of whether there exists superior multi-factor strategy after adjusting 

for data mining bias. Furthermore, because the multiple testing methods that are based on 

independence or arbitrary dependence assumption could be much more conservative, they 

could have much less power to identify significantly superior strategies. The advantage of 

data-driven methodology is that the information about dependence structure among the 

portfolios performance is taken into account directly from the data and hence is more 

powerful. 

Second, we show that there are benefits by combining a few factors into one while 

constructing portfolio strategy. For instances, the order of outperformance in the single-

factor portfolios universe is sensitive to the definition of factors, whereas the outperforming 

multi-factor strategies are more robust. A recurring theme is the portfolio of firms with 

combined characteristics of small-cap, value, high momentum, and low volatility; the 

portfolio’s outperformance is consistently significant regardless how we measure valuation 

ratio, momentum, or volatility. The in-sample and out-of-sample analysis also show that 

multi-factor strategies have more stable outperformance than the single-factor portfolios. 

This is because the performance of multi-factor strategies does not rely on one particular 

factor exposure, instead the constituents of the portfolios are firms with diversified 

characteristics to earn higher risk-adjusted returns. This finding is also consistent with the 

suggestion by Cliff Asness, co-founder of AQR Capital Management, who advocates 

diversification and keeping all factors "on" most of the time (Kim, 2016). 

By using the sample from 1968 to 2015, we identify quite a few multi-factor strategies 

that significantly outperform market portfolio in terms of Sharpe ratio under multiple 

hypotheses testing. The critical value for the annualized Sharpe ratio, which is free of data 

mining bias, is approximately 0.6. We consider 8 different classes of factors to combine 

and each portfolio is rebalanced annually. Our results show that stock selection strategies 

based on combining 4 to 6 factors generate significant superior returns and the results are 

robust against different choices of portfolio weights or definitions of factors. The 

annualized Sharpe ratio could be as high as 1 in the in-sample analysis. 

Furthermore, we examine the outperformance of the multi-factor portfolios against 

small-cap value portfolio. Arnott et al. (2013) suggest that many multi-factor strategies or 
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smarter beta ETFs resemble small-cap value portfolio, thus they simply provide product 

varieties without additional economic value. The critical value for the annualized Sharpe 

ratio increases to around 0.8 if we change the benchmark to small-cap value portfolio. As 

a result, the number of outperforming multi-factor portfolios is significantly reduced. 

Nevertheless, we still find that there exists ample opportunity for investors to improve their 

portfolio selection through multi-factor strategies.  

Backtesting without Data Mining Bias 

We use the difference between Sharpe ratio of the i-th portfolio, SR�, and that of the 

benchmark portfolio, SR� , as the portfolio performance evaluation metric. Our null 

hypotheses of interests are 

��
� : SR� − SR� ≤ 0, 
 = 1, … , M, (2) 

where M is the number of portfolios considered and SR is the annualized Sharpe ratio 

calculated as 12 multiply with the mean excess returns and then divide by the standard 

deviation of the excess returns. Our objective is to find a common threshold or critical value 

to decide which null hypotheses to reject under multiple testing framework. In other words, 

we thereby determine how large the Sharpe ratio difference should be for a collection of 

multi-factor portfolios to significantly beat the benchmark portfolio without data mining 

bias. 

The critical value for a test statistic in individual hypothesis testing is estimated so that 

the probability of committing Type I Error is bounded below a certain threshold which 

depends on the desired significance level. However, in multiple hypotheses testing, we 

need to consider a different notion of error rate before we develop the testing procedure. 

Unlike individual hypothesis testing, there are various types of error rates in the multiple 

testing literature. In this study, we use False Discovery Proportion (FDP), which is defined 

as the ratio between the number of false rejections (Type I Errors) and the total number of 

rejections. If there is no rejection, then FDP is defined as 0. We say that a statistical testing 

method controls the FDP if the procedure could assure 

Ρ�FDP > �� ≤ �, (1) 
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where � and � are the user-specified inputs. 

To control the FDP, we use the FDP-SPA procedure outlined in Hsu et al. (2014). 

Intuitively, the multiple testing framework proceeds as follows. First, we calculate the 

performance measures for portfolios 
 = 1, … , M. Starting from k = 1, we follow Step-

SPA(k) algorithm also in Hsu et al. (2014), which controls k-FWER at � level, where k-

FWER is the probability of falsely rejecting at least k true null hypotheses. We then reject 

the portfolios with performance metrics being greater than the critical value estimated by 

Step-SPA(1). If there is no rejection, i.e. none of the portfolio has superior performance, 

then we stop. Otherwise, we apply Step-SPA(k+1) until k/(�� + 1) > �, where �� is the 

number of rejection at stage k. The final critical value is the threshold for the portfolio 

performance measures that would asymptotically control the FDP below � . The exact 

algorithms of the Step-SPA(k) and FDP-SPA are given in the Appendix. 

In contrast to the procedure suggested in Harvey and Liu (2014) and Harvey et al. (2016), 

our method takes into account the dependence structure among the portfolio performances 

directly from the data. Specifically, the methodology involves a bootstrap estimation of the 

probability distribution in each step of the stepwise procedure. Moreover, Romano and 

Wolf (2007) suggest that if the test statistics are correlated, then the distribution of FDP 

could be highly skewed. This would cause the False Discovery Rate (FDR)1 controlling 

method, which concerns only about the mean of FDP, be a less appropriate choice of error 

rate. Another advantage of the Hsu et al. (2014)’s procedure is that it could minimize the 

impact of irrelevant underperforming multi-factor strategies, because it is shown in Hansen 

(2005) that the statistical power of multiple hypothesis testing could be substantially 

reduced if too many irrelevant inferior models are included. 

Data and Construction of Multi-Factor Strategies 

We obtain the accounting and monthly stock returns data of US firms over 1968-2015 

from Compustat and CRSP databases, respectively. We follow Beaver et al. (2007) to 

adjust for delisting bias in CRSP stock returns data. To ensure that our sample on US stocks 

could serve as meaningful trading purposes, we exclude firms with negative book value of 

                                                           
1 FDR is defined as conditional expected value of FDP on total number of rejection is greater than zero.  
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equity and stock price below $1. The risk-free rate is the one-month Treasury bill rate 

obtained from Professor Kenneth French’s website.  

A preliminary step in the multiple testing is to choose a set of factors and then construct 

the universe of multi-factor portfolios. Over the past two decades, the empirical finance 

literature has discovered several factors affecting stock returns (see, e.g., Hou et al. 2015). 

We select 8 styles of investment strategy and pick one representative variable for each style 

as the factor to construct the multi-factor portfolios.  

Table 1 gives the definition of the factors we adopt. The multi-factor ETF usually 

employ four categories of factors. For example, JP Morgan Diversified Return US Equity 

ETF and Global X Scientific Beta U.S. ETF use value, size, momentum, and volatility as 

their underlying factors, and iShares FactorSelect MSCI US ETF combines value, size, 

momentum, and quality. We choose to adopt a broader classification than the current 

practices of multi-factor ETFs. Other categories or factors that are not covered by major 

multi-factor ETF providers have been documented in the academic literature to be 

influential stock return determinants. By including a richer set of investment styles, we can 

also test whether the performance of multi-factor strategy could be improved by combining 

more factors.  

Our multi-factor portfolios are constructed as follows. Each factor is ranked according 

to its value in ascending order at the end of April every year. We choose April as the cut-

off for portfolio formation because we retain only firms with December fiscal year end and 

assume the accounting information is available with a four-month lag. After the factors are 

sorted independently, we assign a variable r("#) equals the value from 1 to N (the last 

number of observations) for each factor x based on its rank. The superscript l indicates that 

firm with the lower value of factor receives lower score. If the ranks are tied, then we will 

assign the same score. We also define another high-to-low ranked variable r("$) where its 

value equals 1 to N for each decreasingly ranked factor, i.e. firms with greater value of 

factor receives lower score. We include the “upside-down” version since we choose not to 

take any prior knowledge on which order should the factors be ranked. Moreover, Arnott 

et al. (2013) find that some stock selection strategies based on sensible investment belief, 
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such as picking low PE ratio stocks strategy, could have equal performance when the 

factors are sorted in a reverse direction. 

We then transform r(") into z-score, z("), by subtracting its mean and dividing by its 

standard deviation within the same year. After calculating the z-scores, we add them 

together with various combinations. The multi-factor portfolios are constructed by longing 

the stocks with combined z-scores being within the bottom decile. For instance, small-cap 

value momentum strategy forms the portfolio of stocks with combined z-scores, z(&'()) +

 z*+&ℎ- +  z*&.&12ℎ-, being below 10% quantile at the portfolio formation time. 

The portfolio weights for each stock are calculated as follows. Let 01, … , 02 denote the 

combined z-score of the selected S stocks. We rank and standardize the values of 01, … , 02 

once again and denote the new score with 31, … , 32. The portfolio weight of stock 
 at the 

portfolio formation time is defined as  

4� =
1 − Φ(3�)

∑ 1 − Φ(37)2
781

 , 
 = 1, … , 9, (3) 

where Φ(∙) is the Gaussian cumulative distribution function. We construct the portfolio 

weight this way so that the portfolio exposure to multi-factor score is greater. This is also 

in line with Arnott et al. (2005). 

Main Results 

We begin by analyzing the results of single-factor portfolios. The value-weighted 

market portfolio (mkt) is used as our benchmark. Figure 1 plots both mean and standard 

deviation of the portfolio excess returns. The factor portfolio returns in our sample exhibit 

the same pattern as those predicted in the literature. For instance, the portfolio of firms with 

bm in the high decile outperforms the ones in the low decile. The small-cap portfolio (mvel) 

has greater mean returns than large-cap portfolio (mveh). The low volatility portfolio (tvoll) 

has much smaller standard deviation than high volatility portfolio (tvolh), despite that their 

mean returns are approximately the same. Excluding the portfolio tvoll, the market portfolio 

has the lowest standard deviation. Since we construct the portfolio so that its exposure to 

the underlying factor is higher, it is not surprising that the portfolio mveh almost has the 

same mean and standard deviation as market portfolio.  
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Table 2 shows the critical values for (annualized) Sharpe ratio difference based on the 

multiple hypotheses testing. We control the FDP to be below 10% with a 95% confidence 

level, i.e. we set ξ and � in Equation (1) equal 0.1 and 0.05, respectively. One notable result 

is that the critical values are roughly the same for the all types of universes. The critical 

value is approximately 0.245, except for the universes of two-factor and eight-factor 

portfolios which have slightly greater critical values. The result means that to guard against 

data mining bias, we need to require the multi-factor portfolio’s Sharpe ratio to exceed the 

market portfolio’s by 0.245 to claim a significant outperformance. The market portfolio 

has Sharpe ratio of 0.366 in our sample, so the critical value can also be translated as the 

hurdle rate for Sharpe ratio is approximately 0.611. 

Intuitively, when there is a larger universe of portfolio strategies to search for the 

significant outperformances, one might expect that the critical value to be greater to guard 

against data mining. This is in contrast to our result of “flat” critical values across different 

types of combinations. This is generally true if the performances of the portfolio strategies 

are independent. However, due to the positive correlation among the factors, the critical 

value does not need to be greater to alleviate the data mining bias. Another reason for why 

the critical value is not increasing with the size of portfolio universe is that a lot of the 

additional strategies which span the larger universe have negative returns, therefore their 

contribution to the distribution becomes irrelevant in the limit2. 

The numbers of outperforming strategies presented in Table 2 show that there are 

various multi-factor investment strategies with statistically significant Sharpe ratio 

differences. In each of the five-factor or six-factor strategies alone, there are almost 200 

combinations that could outperform the market portfolio. In Table 3 we report the best 5 

outperforming schemes for each multi-factor strategy, the number in parenthesis is the 

respective Sharpe ratio difference.  

The low volatility portfolio is the only single-factor strategy with Sharpe ratio difference 

being greater than the corresponding critical value. The outperformance of low volatility 

strategy is also apparent from Figure 1, it is the only factor portfolio with greater mean 

                                                           
2 This is one of the properties in Hsu et al. (2014)’s FDP-SPA. For detailed descriptions, see Appendix. 
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excess returns and lower standard deviation than the market portfolio. The other 

outperforming factor portfolios mostly lie on the upper right to the market portfolio, i.e. 

they beat market portfolio in terms of mean excess returns, but their standard deviations 

are also higher than the market portfolio’s. Note that the Sharpe ratio of small-cap portfolio 

or high book-to-market portfolio is also considerably greater than the market portfolio’s 

but is not large enough to surpass the critical value. This shows that after adjusting for data 

mining bias, the returns of most single-factor portfolios are statistically insignificant. 

For the two-factor strategies, there are 11 out of 112 portfolios with the values of Sharpe 

ratio difference above the critical value (0.255). Table 3 shows that all of the best 5 two-

factor portfolios involve low volatility factor in their sorting strategy. In addition to 

outperforming the benchmark with a significant difference in Sharpe ratios, the 

improvements over low volatility portfolio are quite modest. The Sharpe ratio differences 

of well-known two-factor strategies such as small-cap value (bmh/mvel) and momentum 

value (bmh/mom12h) are much less than portfolios which include low volatility factor, but 

they are still greater than the critical value (0.168 and 0.341, respectively).   

We find that by combining three or four factors, we could increase the Sharpe ratio 

difference over low volatility portfolio’s by a much higher margin. All of the best 5 

outperforming strategies have at least 0.5 Sharpe ratio difference. It is also noteworthy that 

the best strategy in four-factor universe resembles certain popular ETF products mentioned 

in the introduction. The result shows that portfolio based on combined ranking of small-

cap, value, momentum, and low volatility (bmh/mvel/mom12h/tvoll) delivers Sharpe ratio of 

0.579 in excess of the market portfolio Sharpe ratio. If we drop market capitalization from 

the combination, the Sharpe ratio difference becomes 0.512, which is still statistically 

significant. 

To compare the portfolio performances across different number of factors, we plot the 

Sharpe ratio differences against the rankings within each type of multi-factor strategy. 

Figure 2 shows that there is a modest gain in Sharpe ratio difference by adding one more 

factor to form four-factor strategy. The top 3 outperforming six-factor portfolios and the 

best seven-factor portfolio have the highest Sharpe ratio among all multi-factor strategies. 

The remaining six-factor portfolios fail to perform as well as the five-factor portfolio. 
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Moreover, most of the seven-factor portfolios are inferior to five-factor or four-factor 

portfolios. This pattern is also similar to the eight-factor strategies. The best of eight-factor 

portfolios outperforms the market portfolio by the similar magnitude to the best of four-

factor portfolios. However, the performances of the remaining eight-factor portfolios 

deteriorate sharply. Some factors in the eight-factor strategies are combined using the 

upside-down version, for instance, Table 3 shows that its third best strategy includes low 

momentum factor (mom12l) and the fourth best strategy applies low profitability ( roel) 

instead of high profitability factor (roeh).  

Out-of-Sample Performance. In Table 4, we compare the in-sample and out-of-sample 

portfolio risk-scaled returns. We choose May 2010 as the cutoff to split the sample into the 

in-sample and out-of-sample period. McLean and Pontiff (2016) suggest that many of the 

factors premium or the outperformance over market portfolio disappear in the sample 

period after their academic publications. All of the factors we use in this study are published 

before 2010, hence the cutoff in May 2010 should be a reasonable choice to evaluate out-

of-sample performances. For the sake of brevity, we show the results of single- to five-

factor portfolios, the rest of the multi-factor portfolios unreported here paint the similar 

picture. 

Panel A of Table 4 reports the top 3 outperforming strategies in each multi-factor 

portfolio universes for the in-sample and out-of-sample period. For each strategy, we show 

the in-sample and out-of-sample Sharpe ratio differences in the parentheses, respectively. 

The in-sample critical values for Sharpe ratio differences, shown in Panel B, are 

approximately 0.26 which is slightly higher than the estimates based on the full sample. 

However, we note that the market portfolio Sharpe ratio is 0.304 based on the sample prior 

to May 2010, so the data-mining bias free threshold for the Sharpe ratio is roughly 0.57, 

which is less than the one estimated with full sample data. 

With the exception of low volatility portfolio, all of the single-factor portfolios perform 

worse than market portfolio in the out-of-sample period. The small-cap portfolio and value 

portfolio are the second and third best portfolios in-sample but have negative Sharpe ratio 

differences and are not ranked within the top 3 portfolios in the out-of-sample period. The 
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results also show that large-cap portfolio outperforms small-cap portfolio after May 2010; 

however, both of them underperform market portfolio. 

The out-of-sample performances of multi-factor portfolios are relatively more stable 

than the single-factor portfolios. It appears to be difficult to predict which strategy would 

deliver the highest Sharpe ratio difference. Nevertheless, the best strategy according to in-

sample Sharpe ratio difference is still among the top outperforming strategies in the out-

of-sample period.  We also note that the Sharpe ratio of market portfolio in the out-of-

sample period (0.912) is much greater than the in-sample period (0.304); therefore, even if 

the multi-factor strategies outperform the market portfolio by lower magnitude after May 

2010, the absolute Sharpe ratio of the portfolio could still be greater than the in-sample 

Sharpe ratio. 

Are Multi-Factor Strategies Really Smarter? Many skeptics suggest that multi-factor 

strategies are merely a marketing gimmick of ETF vendors. Arnott et al. (2013) argue that 

many multi-factor strategies are actually portfolios with exposure tilted toward small-cap 

value factors, therefore further adding different factors would not enhance portfolio 

performance. In Table 5, we report the backtesting results by replacing the benchmark with 

small-cap value portfolio to investigate if there are still any outperformances in multi-factor 

portfolios.  

In contrast to the results when the market portfolio is used as benchmark, the numbers 

of significant outperforming strategies are considerably much smaller since the Sharpe 

ratio threshold now becomes greater. The critical values for Sharpe ratio differences range 

between 0.286 and 0.301. The Sharpe ratio of small-cap value portfolio in our full sample 

period is 0.534. This means that the absolute Sharpe ratio of the multi-factor portfolio has 

to be at least 0.82 to be deemed statistically significant under our multiple hypotheses 

testing framework. Therefore, there are not many strategies that could beat small-cap value 

portfolio. This result is as suggested by Arnott et al. (2013). Nevertheless, the evidences in 

Table 5 suggest that other factors such as low volatility and high momentum help improve 

the portfolio performances. For example, the Sharpe ratio difference of portfolio 

bmh/mvel/mom12h/tvoll and small-cap value portfolio is 0.412, which surpasses the critical 

value for four-factor portfolio universe. 
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Robustness Check 

In this section, we discuss the sensitivity of the main results with respect to various 

research design modifications.  

Trimming the extreme observations. To examine if the significant outperformance is 

driven only by a few outliers, we exclude the firms with the extreme value of factors before 

calculating the combined multi-factor score. For each factor, we trim the 5% extreme 

observations from the sample. Therefore, if any of the factors is within 5% quantile, then 

the firms are excluded from the portfolio sorting that year. 

The results, not shown here, are fairly similar to the ones in Tables 2 and 3. The critical 

values of Sharpe ratio differences range between 0.231 and 0.248. The only significant 

single-factor portfolio is tvoll with Sharpe ratio 0.391 higher than market portfolio. When 

we keep the extreme observations, tvoll has Sharpe ratio difference of 0.381. We also obtain 

considerably larger number of significant outperforming portfolios compared to the case 

without trimmed observations. This shows that the superior performance of multi-factor 

investment strategies is not due to the influence of firms with extreme factors. 

Fixed number of stocks portfolio. Since the earlier years have fewer public firms, the 

selected stocks in the portfolio based on 10% quantile will be less during this period. 

Instead of choosing the cut-off quantiles, we can fix the number of stocks to include in the 

portfolio across all years. There are trade-offs in choosing the portfolio size. While 

lowering the number of stocks to purchase could increase the exposure to the desired 

factors, it could be less diversified. We try various numbers of stocks: 50, 100, 200, and 

300. To save space, we do not report the results here but they are available upon request.  

We find that the critical values for portfolios with 50 stocks are around 0.29, which is 

greater than the critical values shown in Table 2. As a result, the number of significant 

outperforming portfolios is smaller. Nonetheless, there are still many portfolios with 

significant Sharpe ratio differences. As we increase the number of selected stocks, the 

critical value becomes lower and the number of significant portfolios increases. Of note, 

the top outperforming multi-factor portfolios shown in Table 3, e.g. bmh/mvel/mom12h/tvoll, 

remain significant regardless the number of stocks included. 
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Alternative definition of factors. We use a different set of proxy variables to check the 

robustness of particular investment styles to the definition of their factors. Hsu et al. (2015) 

also recommended to slightly perturb the definition of the factors while evaluating smart 

beta strategies. Panel A of Table 6 shows the definition of the new set of factors. 

In Panel B and Panel C of Table 6, we conduct the same analysis with this alternative 

definition of the factors. For results with the market portfolio as the benchmark, the critical 

values range between 0.23 and 0.24, which is slightly lower than the baseline results in 

Table 2. Moreover, there are a large number of significant portfolios. The four-factor 

strategy alone has 245 portfolios that could beat the market portfolio significantly and there 

are two single-factor portfolios with significant Sharpe ratio differences, momentum 

(wh52h) and value (eyh). The low volatility factor portfolio becomes insignificant when we 

use beta as the proxy variable despite that it still has greater Sharpe ratio than the market 

portfolio. If we change the benchmark to small-cap value portfolio, then there are only ten 

portfolios with significant superior performances. However, we still find that the portfolio 

based on small-cap, value, momentum, and low volatility strategy yields highly significant 

Sharpe ratio. 

The overall results suggest that which single-factor portfolio has the highest Sharpe ratio 

may depend on the definition of the factor, but as we combine the factors, the performance 

of multi-factor portfolio becomes more robust to the factor definitions. 

Value-weighted strategies. Table 7 presents the results for the multiple testing of 

portfolio performance when market capitalization is used as the portfolio weight. The 

estimated critical values for multi-factor portfolio Sharpe ratio difference turn out to be 

greater than the baseline results, while the single-factor portfolio has smaller estimated 

critical value. All of the portfolio performances deteriorate after we switch the portfolio 

weight to market capitalization. None of the single-factor portfolios has a significant 

Sharpe ratio difference. The results support the fact shown in Arnott et al. (2005) that score-

weighted strategy is the better portfolio weighting scheme. 
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Conclusion 

This study aims at recent multi-factor ETFs, which provide investors the opportunity to 

increase their portfolio exposure beyond both size and value factors. The multiple testing 

framework allows us to analyze the performance of portfolios which are constructed from 

numerous factors combinations without data mining bias. The results shown in this study 

suggest that investors may achieve higher Sharpe ratio through multi-factor portfolio 

strategies. We consider two benchmark portfolios: value-weighted market portfolio and 

small-cap value portfolio. The Sharpe ratios of the best performing multi-factor portfolios 

exceed the benchmarks’ Sharpe ratio by a modest magnitude above the estimated critical 

value.  

We find that a strategy of purposefully biasing the portfolio weights toward greater 

exposure of the multi-factor scores generates better portfolio performance than the market 

capitalization weighted strategy. Our results also suggest that the performance of multi-

factor portfolios remains relatively stable than the single-factor portfolio performance 

when we alter the definitions of factors. Moreover, while it is not possible to predict which 

portfolio would have the highest Sharpe ratio ex-ante, the outperforming multi-factor 

portfolios could still consistently beat the benchmark in both in-sample and out-of-sample 

periods.  
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Appendix 

This appendix presents the FDP-SPA controlling procedure to test the multiple 

inequalities  

��
� : SR� − SR� ≤ 0, 
 = 1, … , <. 

The FDP-SPA procedure is based on applying Step-SPA(k) algorithm recursively. Let 

max(A, k) denotes the k-th largest value of vector A and 1(∙) denotes the indicator function. 

Furthermore, >� and ? denote the vector of excess returns of portfolio 
 and benchmark 

portfolio, respectively, and let @ be the sample size of the excess returns. The procedure 

ensures that Ρ�FDP > �� ≤ � asymptotically, which means that the probability of false 

discovery proportion exceeding �  is bounded below �  when @  is large enough. In our 

empirical analysis, we use � = 0.1  and � = 0.05 . The output of the FDP controlling 

procedure is a common cutoff point or critical value that determines which portfolios have 

significantly greater Sharpe ratio than the benchmark portfolio does. 

Step-SPA(k) algorithm with level � 

1 procedure stepSPA(�>1, … , >B , ?�, �, C) 

2 Input data: �>1 , … , >B , ?� ◆ Data of portfolio and benchmark excess returns 

3 Input parameter: �, C ◆ FWER(C)’s parameters 

4 create vector STAT of size < 

5 for 
 ∈ �1, … , <� do 

6     Δ� = SR� − SR�  

7     Δ�
F = Δ� × 1(√@Δ� ≤ −σ�J2 log log @) ◆  σ� is the standard error of Δ� 

8     STAT[
] = Δ�  

9 end for 

10 create matrix X with row size < and column size N 

11 for O ∈ �1, … , N� do 

12     generate bootstrap sample �>1
P, … , >B

P , ?P�      

13     for 
 ∈ �1, … , <� do 

14         X[
, O] = Δ�
P − Δ� + Δ�

F  ◆  Δ�
P is the SR difference using bootstrap sample O 

15     end for   

16 end for 

17 create sort_index which order the vector STAT from high to low 

18 SORTED_X = X[sort_index, :] ◆  re-order rows of X according to the sort_index 
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19 NUM_REJECT = 0 

20 NUM_REJECT = -1 

21 create vector KMAX of size N 

22 while NUM_REJECT > NUM_REJECT1 do 
◆  The procedure will stop when there is 
no further rejections 

23     NUM_REJECT1 = NUM_REJECT 

24     if NUM_REJECT < C then do 

25         for O ∈ �1, … , N� do 

26             KMAX[O] = max( SORTED_X[: , O], C ) 

27         end for 

28     else do 

29         for O ∈ �1, … , N� do 

30             KMAX[O] = max( SORTED_X[(NUM_REJECT−C + 2):<, O], C ) 

31         end for 

32     end if 

33     q = max( KMAX, round(� × N) ) 

34     if q < 0 then q = 0 end if 

35     CRITCAL_VALUE = q 

36     NUM_REJECT = sum(1(STAT > CRITICAL_VALUE)) 

37 end while 

38 Output: CRITICAL_VALUE 

39 end procedure 

  

  

FDP-SPA with � and ξ 

1 procedure FDP_SPA(�>1, … , >B , ?�, �, �) 

2 Input data: �>1 , … , >B , ?� ◆ Data of portfolio and benchmark excess returns 

3 Input parameter: �, � ◆  FDP-SPA’s parameters 

4 create vector STAT of size < 

5 for 
 ∈ �1, … , <� do 

6     STAT[
] = SR� − SR�  

7 end do 

8 SPA_k = 1 

9 CRITICAL_VALUE = stepSPA(�>1, … , >B , ?�, �, SPA_k) 

10 NUM_REJECT = sum(1(STAT > CRITICAL_VALUE)) 

11 while NUM_REJECT < SPA_k /  � − 1 do 
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12     SPA_k = SPA_k + 1 

13     CRITICAL_VALUE = stepSPA(�>1 , … , >B , ?�, �, SPA_k) 

14     NUM_REJECT = sum(1(STAT > CRITICAL_VALUE)) 

15 end while 

16 Output: CRITICAL_VALUE 

17 end procedure 
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Figure 1. Mean excess returns and standard deviation. 

 

Note: The mean and standard deviation are computed with score-weighted portfolio returns from May 1968 
to December 2015. The portfolio formation date is at the end of April every year. The superscripts h and l 
denote the high and low decile portfolios, respectively. The portfolio mkt is the value-weighted market 
portfolio.  

  



21 

 

 
 
 

Figure 2. Sharpe ratio differences comparison. 

 
Note:This figure provides a comparison of the Sharpe ratio differences among the top 20 portfolios across 
different number of factors used in each multi-factor strategy.  
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Table 1. Variable definition. 
Style Factor Reference Definition 

Value bm Stattman (1980) book value of equity / market value of equity 

Size mve Banz (1981) market value of equity 

Momentum mom12 Jegadeesh (1990) 
cumulative stock returns over the past twelve 
months, excluding the most recent month 

Reversal mom36 DeBondt and Thaler (1985) 
cumulative stock returns over the past three 
years 

Risk tvol Ang et al. (2006) 
historical volatility of stock returns over the 
past 52 weeks 

Profitability roe Fama and French (2006) earnings / book value of equity 

Growth ag Cooper et al. (2008) annual growth of total assets 

Earnings 
Quality 

accr Sloan (1996) 
(EBIT – cash flow from operations) / 
beginning-of-year total assets 

Note: The portfolio formation time is end of April each year. Annual accounting information is assumed to be available 
with a four-month lag and only firms with December fiscal year end are considered. Book value of equity excludes 
preferred stocks. 
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Table 2. Sharpe ratio difference of multifactor strategies. 
Number 

of Factors 
Number of Portfolios 

Number of Outperforming 
Strategies 

Critical Value for Sharpe 
Ratio Difference 

1 16 1 0.240 

2 112 11 0.255 

3 448 61 0.242 

4 1120 126 0.246 

5 1792 196 0.246 

6 1792 197 0.246 

7 1024 104 0.248 

8 256 25 0.250 
Note: The critical value of. Sharpe ratio difference is defined in Equation (2). The annualized Sharpe ratio of 
market portfolio is 0.366. The number of portfolios in each universe is Q7

R × 27, where j is the number of 
factors used to construct the multi-factor portfolios. 

   

Table 3. Strategies with the highest Sharpe ratio difference. 
Number 

of Factors 
Top 5 Strategies 

1 tvoll (0.391),  mvel (0.170),  bmh (0.147),  roeh (0.102),  agl (0.041). 

2 mvel/tvoll (0.502),  mom12h/tvoll (0.455),  bmh/tvoll (0.450),  tvoll/agl (0.445),   
mom36h/tvoll (0.420). 

3 mvel/mom12h /tvoll (0.578),  mvel/mom36h /tvoll (0.540),  mvel/tvoll/roeh (0.520),  
bmh/mom12h/tvoll (0.512),  bmh/mom36h/tvoll (0.508). 

4 
bmh/mvel/mom12h/tvoll (0.579),  bmh/mvel/mom36h/tvoll (0.567),  
bmh/mom36h/tvoll/agl (0.554),  mvel/mom12h/tvoll/roeh (0.544),   
bmh/mom12h/tvoll/agl (0.536). 

5 
bmh/mvel/mom12h/tvoll/roeh (0.607),  bmh/mvel/mom36h/tvoll/agl (0.598),  
mvel/mom36h/tvoll/agl/roeh (0.581),  mvel/mom12h/tvoll/agl/roeh (0.571),    
bmh/mvel/mom12h/mom36h/tvoll (0.571). 

6 
bmh/mvel/mom12h/tvoll/agl/roeh (0.657),  bmh/mvel/mom36h/tvoll/agl/roeh (0.640),  
bmh/mvel/mom12h/mom36h/tvoll/agl (0.610),  bmh/mvel/mom36h/tvoll/agl/accrl (0.567),  
bmh/mvel/mom12h/mom36h/tvoll/roeh (0.561). 

7 

bmh/mvel/mom12h/mom36h/tvoll/agl/roeh (0.634),  
bmh/mvel/mom36h/tvoll/agl/roeh/accrl (0.597),   
bmh/mvel/mom12h/tvoll/agl/roeh/accrl (0.559),   
bmh/mvel/mom12h/mom36h/tvoll/roeh/accrl (0.548),  
bmh/mvel/mom12h/mom36h/tvoll/agl/accrl (0.545). 

8 

bmh/mvel/mom12h/mom36h/tvoll/agl/roeh/accrl (0.562),   
bmh/mvel/mom12h /mom36h/tvoll/agl/roeh/accrh (0.500),  
bmh/mvel/mom12l/mom36h/tvoll/agl/roeh/accrl (0.472),  
bmh/mvel/mom12h/mom36h/tvoll/agl/roel/accrh (0.405),  
bmh/mvel/mom12h/mom36h/tvoll/agl/roel/accrl (0.404). 

Note: The number in parentheses is the portfolio’s Sharpe ratio difference. 
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Table 4. In-sample and out-of-sample comparison.  

Panel A. 

Number 
of 

Factors 
Ranked with In-Sample Data Ranked with Out-of-Sample Data 

1 tvoll (0.367, 0.650) tvoll (0.367, 0.650) 

 bmh (0.255, -0.753) mveh (0.037, -0.115) 

 mvel (0.228, -0.307) mom36h (-0.013, -0.194) 

2 mvel/tvoll (0.491, 0.865) mvel/tvoll (0.491, 0.865) 

 bmh/tvoll (0.466, 0.367) mom36h/tvoll (0.403, 0.653) 

 tvoll/agl (0.452, 0.359) mom12h/tvoll (0.444, 0.522) 

3 mvel/mom12h/tvoll (0.565, 0.795) mvel/mom36h/tvoll (0.530, 0.904) 

 mvel/tvoll/roeh (0.532, 0.595) mvel/mom12h/tvoll (0.565, 0.795) 

 mvel/mom36h/tvoll (0.530, 0.904) mvel/tvoll/accrh (0.167, 0.614) 

4 bmh/mvel/mom12h/tvoll (0.585, 0.616) bmh/mvel/mom36h/tvoll (0.564, 0.857) 

 bmh/mom36h/tvoll/agl (0.565, 0.487) mvel/mom36h/tvoll/agl (0.529, 0.682) 

 bmh/mvel/mom36h/tvoll (0.564, 0.857) mvel/mom36h/tvoll/roel (0.531, 0.643) 

5 bmh/mvel/mom12h/tvoll/roeh (0.620, 0.593) bmh/mvel/mom36h/tvoll/agl (0.610, 0.682) 

 bmh/mvel/mom36h/tvoll/agl (0.610, 0.682) mvel/mom36h/tvoll/agl/accrh (0.323, 0.649) 

 mvel/mom36h/tvoll/agl/roeh (0.591, 0.619) bmh/mvel/mom12h/mom36h/tvoll (0.579, 0.632) 

Panel B. 

Number of Factors Number of Portfolios 
Number of Outperforming 

Strategies 
Critical Value for Sharpe Ratio 

Difference 

1 16 1 0.264 

2 112 14 0.269 

3 448 71 0.262 

4 1120 136 0.267 

5 1792 237 0.265 
Notes: Panel A presents the top 3 outperforming multifactor strategies based on in-sample and out-of-sample period ranking. 
We use May 1968 to April 2010 as the in-sample period and May 2010 to December 2015 as the out-of-sample period. The 
numbers in the parentheses are Sharpe ratio differences for the in-sample period (first) and out-of-sample period (second). 
The Sharpe ratios of market portfolio are 0.304 and 0.912 for the in-sample and out-of-sample period, respectively. Panel B 
reports the critical values estimated using only the in-sample period data. 
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Table 5. Backtesting with small-cap value portfolio as the benchmark.  
Number 

of 
Factors 

Number of 
Outperforming 

Strategies 

Critical Value 
for Sharpe Ratio 

Difference 
Top 3 Significantly Outperforming Strategies 

3 10 0.286 
mvel/mom12h/tvoll (0.410), mvel/mom36h/tvoll (0.372), 
mvel/tvoll/roeh (0.352). 

4 18 0.300 bmh/mvel/mom12h/tvoll (0. 412), bmh/mvel/mom36h/tvoll 

(0.399), bmh/mom36h/tvoll/agl (0.386). 

5 24 0.301 bmh/mvel/mom12h/tvoll/roeh (0.439), bmh/mvel/mom36h/tvoll/ 

agl (0.431), mvel/mom36h/tvoll/agl/roeh(0.414). 

6 21 0.296 
bmh/mvel/mom12h/tvoll/agl/roeh (0.489), bmh/mvel/mom36h/ 

tvoll/agl/roeh (0.472), bmh/mvel/mom12h/ mom36h/tvoll/agl 
(0.442). 

7 14 0.294 
bmh/mvel/mom12h/mom36h/tvoll/agl/roeh (0.467), 
bmh/mvel/mom36h/tvoll/agl/roeh/accrl (0.430), 
bmh/mvel/mom12h/tvoll/agl/roeh/accrl (0.391). 

8 3 0.291 
bmh/mvel/mom12h/mom36h/tvoll/agl/roeh/accrl (0.394), 
bmh/mvel/mom12h/mom36h/tvoll/agl/roeh/accrh (0.333), 
bmh/mvel/mom12l/mom36h/tvoll/agl/roeh/accrl (0.305). 

Notes: This table summarizes the backtesting results when small-cap value portfolio is used as the benchmark. For the last 
column, the number in parentheses is the Sharpe ratio difference between the multi-factor portfolio and small-cap value 
portfolio (bmh/mvel). The Sharpe ratio of small-cap value portfolio in our sample period is 0.534. 
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Table 6. Results using alternative proxy variable. 
Panel A. 
Factor Style Factor Definition 

Value ey EBIT / market value of equity 

Size mve market value of equity 

Momentum wh52 current stock price / 52-week high of stock price 

Reversal mom60 cumulative stock returns over the past sixty months 

Risk beta CAPM beta from regression using the past 52 weekly returns 

Profitability gpm gross profit margin 

Growth inv capital expenditure / gross property, plant, and equipment 

Earnings 
Quality 

accr (EBIT – cash flow from operations) / last year total assets 

Panel B.  

Number of 
factors 

Benchmark 

Market portfolio Small-cap value portfolio 

Critical value Number of 
outperforming strategies 

Critical value Number of 
outperforming strategies 

1 0.236 2 0.163 0 

2 0.241 21 0.216 0 

3 0.240 95 0.257 2 

4 0.235 245 0.273 4 

5 0.234 392 0.275 3 

6 0.232 410 0.271 1 

7 0.230 246 0.260 0 

8 0.233 63 0.232 0 

Panel C. 
 List of the best 5 strategies 

Single Factor wh52h (0.404),  eyh (0.352), mvel (0.170),  betal (0.150),  agl (0.147). 

Multi-Factor 
eyh/mvel/wh52h/betal (0.758),  eyh/mvel/wh52h/betal/gpmh (0.736),  
eyh/mvel/wh52h (0.717),  eyh/wh52h/betal (0.712),  eyh/mvel/wh52h/gpmh (0.702). 

Notes: This table presents the results with alternative factor definitions. Panel A provides the definition of each 
variable. Panel B shows the critical values for Sharpe ratio differences and the number of outperforming strategies. 
The Sharpe ratios of market portfolio and small-cap value portfolio (eyh/mvel) are 0.366 and 0.407, respectively. In 
Panel C, we report the five portfolios with the highest Sharpe ratio for single factor and multi-factor portfolios; the 
number in parentheses is the Sharpe ratio difference between the corresponding portfolio and market portfolio. 
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Table 7. Value-weighted portfolio.  
Number 

of 
Factors 

Number of 
Outperforming 

Strategies 

Critical Value for 
Sharpe Ratio 
Difference 

The Top 3 Portfolios with the Highest Sharpe Ratios 

1 0 0.218 tvoll (0.149), bmh (0.14), agl (0.132). 

2 2 0.276 mvel/tvoll (0. 407), tvoll/agl (0.302), bmh/tvoll (0.206). 

3 11 0.281 mvel/mom12h/tvoll (0. 504), mvel/mom36h/tvoll (0.463), 
mvel/tvoll/roeh (0.453). 

4 16 0.297 bmh/mvel/mom36h/tvoll (0. 483), bmh/mvel/mom12h/tvoll 

(0.477), mvel/mom12h/tvoll/agl (0.459). 

5 26 0.292 bmh/mvel/mom12h/tvoll/agl (0.479), bmh/mvel/tvoll/agl/roeh 

(0.424), bmh/mvel/mom36h/tvoll/agl (0.421). 

6 25 0.293 
bmh/mvel/mom36h/tvoll/agl/roeh (0.463),  
bmh/mvel/mom12h/ mom36h/tvoll/agl (0.451),  
bmh/mvel/mom36h/tvoll/agl/accrl (0.450). 

7 16 0.296 
bmh/mvel/mom36h/tvoll/agl/roeh/accrl (0.433), 
bmh/mvel/mom12h/mom36h/tvoll/agl/roeh (0.428), 
bmh/mvel/mom12h/tvoll/agl/roeh/accrl (0.422). 

8 4 0.292 
bmh/mvel/mom12h/mom36l/tvoll/agl/roeh/accrl (0.373), 
bmh/mvel/mom12h/mom36h/tvoll/agl/roel/accrh (0.352), 
bmh/mvel/mom12h/mom36h/tvoll/agl/roeh/accrh (0.343). 

Notes: This table shows the results when market capitalization is used to determine the portfolio weight. The number in 
parentheses is the Sharpe ratio difference between the portfolio and market portfolio. 
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Table A1. Each factors is trimmed at 5%. 
Number 

of Factors 
Number of Portfolios 

Number of Outperforming 
Strategies 

Critical Value of Sharpe 
Ratio Difference 

1 16 1 0.233 

2 112 13 0.248 

3 448 76 0.231 

4 1120 174 0.240 

5 1792 302 0.235 

6 1792 315 0.235 

7 1024 170 0.240 

8 256 46 0.240 
Note: Each factors is trimmed using 5% level before constructing the combined score. The critical value of. 
Sharpe ratio difference is defined in Equation (2) annualized Sharpe ratio Market portfolio’s Sharpe ratio is 
0.366. The number of portfolios in each universe is Q7

R × 27, where j is the number of factors used to 
construct the multi-factor portfolios. 
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Table A2. Top 5 outperforming strategies with 5% trimming. 
Number 

of Factors 
Top 5 Strategies 

1 tvoll (0.381),  agl (0.171),  bmh (0.142),  roeh (0.107),  mom36h (0.081). 

2 mom12h/tvoll (0.433),  mvel/tvoll (0.401),  bmh/tvoll (0.397), mom36h /tvoll (0.397), 
tvoll/agl (0.393) . 

3 mvel/mom12h /tvoll (0.523),  bmh/mom36h/tvoll (0.517),  bmh/mom36h/agl (0.503),  
mvel/mom36h /tvoll (0.496),  bml/mom12h/tvoll (0.480). 

4 
bmh/mom36h/tvoll/agl (0.531),  mvel/mom36h/tvoll/accrl (0.523),  
mvel/mom36h/tvoll/agl (0.515), bmh/mvel/mom12h/tvoll (0.514),   
bmh/mom12h/tvoll/agl (0.512). 

5 
mvel/mom12h/tvoll/agl/roeh (0.571),  bmh/mom36h/tvoll/agl/accrl (0.565),  
bmh/mvel/mom36h/tvoll/accrl (0.551),  bmh/mvel/mom36h/tvoll/agl (0.536),    
bmh/mvel/mom12h/mom36h/tvoll (0.526). 

6 

bmh/mvel/mom12h/mom36h /tvoll/agl (0.567),   
bmh/mvel/mom12h/tvoll/agl/roeh (0.563),  
bmh/mvel /mom36h/tvoll/agl/accrl (0.563),  
bmh/mvel/mom12h/mom36h/tvoll/accrl (0.540),   
bmh/mvel/mom36h/tvoll/agl/roeh (0.535). 

7 

bmh/mvel/mom12h/mom36h/tvoll/agl/roeh (0.558),  
bmh/mvel/mom12h/mom36h/tvoll/agl/accrl (0.553),  
bmh/mvel/mom36h/tvoll/agl/roeh/accrl (0.535),   
bmh/mvel/ mom12h/tvoll/agl/roeh/accrl (0.511),  
bmh/mvel/mom12h/mom36h/tvoll/roeh/accrl (0.493). 

8 

bmh/mvel/mom12h/mom36h/tvoll/agl/roeh/accrl (0.540),   
bmh/mvel/mom12h /mom36h/tvoll/agl/roel/accrl (0.488),   
bmh/mvel/mom12l /mom36h/tvoll/agl/roeh/accrl (0.464),    
bmh/mvel/mom12h/mom36h/tvolh/agl/roeh/accrl (0.433),  
bmh/mvel/mom12h/mom36h/tvoll/agl/roel/accrh (0.424). 

Note: The number in parentheses is the portfolio’s Sharpe ratio difference. 
 

 



 

 

 

Table A3. Portfolio with fixed number of stocks. 

 Number of factors 1 2 3 4 5 6 7 8 

S = 50 
Critical value 0.283 0.331 0.298 0.294 0.298 0.289 0.291 0.281 

No. of outperforming 
strategies 

1 7 37 84 114 142 74 24 

S = 100 
Critical value 0.270 0.272 0.271 0.274 0.267 0.265 0.259 0.252 

No. of outperforming 
strategies 

1 11 45 88 161 183 107 30 

S = 200 
Critical value 0.243 0.254 0.249 0.251 0.245 0.243 0.238 0.232 

No. of outperforming 
strategies 

1 12 51 101 197 212 127 35 

S = 300 
Critical value 0.238 0.244 0.237 0.239 0.236 0.232 0.222 0.216 

No. of outperforming 
strategies 

1 21 51 108 216 230 154 42 

Note: The portfolios are score-weighted of fixed number selected S stocks and rebalanced every year. 

 

 

 

 


