
An Introduction to Copula Analysis

Yi-Ting Chen
Institute of Economics, Academia Sinica

January 26, 2008

Yi-Ting Chen, IEAS Copula Analysis



Copula

Copula is one of the most hot keywords in the recent empirical
finance literature. We can find countless working papers from
Google Scholar that apply copula to market relationship,
financial contagion, risk management, asset allocation, and
many other financial problems.
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In this talk, we will introduce the following concepts:

1. What is copula?

2. Why do we need copula?

3. How to establish representative copulae?

4. How to define the cross-dependence measures of a
copula?
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We will also deal with the econometric issues:

1. Specification: A generalized copula-based multivariate
dynamic model.

2. Estimation: A simple three-stage estimation method.

3. Testing: A flexible class of moment-based tests for copula.
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Reference: Chen, Y.-T. (2007). Moment-based Copula Tests
for Financial Returns, Journal of Business and Economic
Statistics, 25, 377-397.
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What is copula?

Roughly speaking, copula is a distribution of distributions.
Specifically, copula is a multivariate distribution of a finite set
of univariate distributions.

Let yt := (y1t , y2t , . . . , ynt)
> be an n × 1 vector of continuous

random variables at time t. Suppose that

I Fy: the multivariate distribution of yt ,

I Fi : the univariate distribution of yit ,

I F−1
i : the quantile function of yit .
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Define the probability integral transformation (PIT):

uit := Fi(yit) and ui := Fi(yi), i = 1, 2, . . . , n.

By fixing (y1, y2, . . . , yn) ∈ Rn, note that the events:

A = {y1t ≤ y1, y2t ≤ y2, . . . , ynt ≤ yn}

and
A′ = {u1t ≤ u1, u2t ≤ u2, . . . , unt ≤ un}

are identical in the sense that IP(A) = IP(A′).
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By definition,

Fy(y1, y2, . . . , yn) := IP(A).

Correspondingly, we may define a function C : [0, 1]n → [0, 1]:

C (u1, u2, . . . , un) := IP(A′),

and refer to it as the copula function (of yt). From
IP(A) = IP(A′), it is clear that

Fy(y1, y2, . . . , yn) = C (u1, u2, . . . , un). (1)
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Sklar’s theorem

In view of yi = F−1
i (ui), we can rewrite (1) as

C (u1, u2, . . . , un) = Fy(F
−1
1 (u1),F

−1
2 (u2), . . . ,F

−1
n (un)). (2)

In view of ui = Fi(yi), we can also re-express (1) as

Fy(y1, y2, . . . , yn) = C (F1(y1),F2(y2), . . . ,Fn(yn)). (3)

The results shown in (2) and (3) are known as Sklar’s (1959)
theorem.
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Sklar’s theorem is likely the most basic and important thing in
the whole copula literature.

1. It means that, for any Fy, there exists a corresponding
copula C .

2. It also illustrates that, by fixing Fy, we can define a
corresponding copula function in accordance with (2).
Therefore, by choosing different Fy’s, we can derive
different copula functions, such as the independent,
normal, Gumbel, and t copulae that we will discuss later.

3. The result in (3) indicates that the copula function is the
joint distribution of the PITs. Therefore, the copula
function is also known as the “dependence function.”
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Copula=Cross-Dependence

The copula function contains all the information regarding the
cross-dependence structures of y1t , y2t , . . . , ynt . In case that
we are interested in studying the cross-dependence structures
of economic variables, it is therefore natural and important to
investigate the underlying copula function.
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Why do we need copula?

Given the fact that there are already several well-known
multivariate distributions, such as the multivariate normal and
multivariate t distributions, among many others, why do we
need copula for a multivariate study?

Flexibility (or said generality) may be an important reason.
There are several ways to see the flexibility of copula in
empirical finance.
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Copula is flexible to generate new multivariate distributions.

I To see this point, we consider the case where Fy is a
multivariate normal distribution. This Fy implies that the
associated Fyi

’s must also be normal. This implication is
obviously too restrictive for financial data because
financial returns are typically of heavy-tails.

I To take into account the heavy-tails of returns, we may
replace the multivariate normal distribution with some
new copula-based multivariate distributions:

normal copula + certain heavily-tailed marginal distributions,

as we will see in the second part of this talk.
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Copula is flexible to unify existing multivariate distributions.

I multivariate normal distribution = normal copula +
normal (marginal) distributions

I multivariate t distribution = t copula + t distributions

I Gumbel’s type-B bivariate distribution = Gumbel copula
+ extreme value distributions
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Copula is flexible to explore various cross-dependence
structures.

I Conventionally, researchers are accustomed to measuring
the cross-dependence of two variables by using Pearson’s
correlation coefficient.

I Indeed, it is the copula, rather than the correlation
coefficient, that plays the role of the dependence function.

I The correlation coefficient is simply an incomplete
measure on the cross-dependence structures.By using the
copula, we can define other important complements, and
even alternatives, to the correlation coefficient.

I Importantly, to characterize the cross-dependence
structures in a complete way, what we need to known is
the true copula (or the true multivariate distribution).
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Copula is also flexible for parameter estimation.

I In the case where the parameters of the marginal
distributions are separable, we can estimate the
parameters of the copula-based multivariate distribution
in a multi-stage way.

I Specifically, we may first estimate the parameters of the
marginal distributions, and then estimate the copula
parameters.

I This is particularly important when the multivariate
distribution is complicated and is difficult to be estimated.

I However, the asymptotic variance-covariance matrix of
the multi-stage estimators is not the same as that of the
one-stage estimators. The former are typically much more
complicated than the latter. This is an important issue
often ignored by practitioners.
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Representative Copulae

To do the copula analysis in a parametric way, we have to
know the closed forms and the implied cross-dependence
structures of certain representative copulae. In the following,
we introduce some important bivariate copulae. These copulae
are all derived from (2).
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Independent copula

If Fy is a distribution of two independent random variables:

Fy(y1, y2) = F1(y1)F2(y2),

then (2) generates the independent copula:

CI (u1, u2) := u1u2.
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Normal copula

If Fy is a bivariate normal distribution with the correlation
coefficient ρ ∈ (−1, 1), then (2) generates the normal copula:

CN(u1, u2; ρ)

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

(
−v 2

1 − 2ρv1v2 + v 2
2

2(1− ρ2)

)
dv2dv1,

where Φ−1 is the quantile function of N(0, 1).
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The t copula

If Fy is the bivariate t distribution with the parameter
ρ ∈ (−1, 1) and the degrees of freedom ν, then (2)
degenerates to the t copula:

Ct(u1, u2; ρ, ν)

=

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Γ
(

ν+2
2

)
Γ

(
ν
2

)
πν

√
1− ρ2

(
1 +

v 2
1 − 2ρv1v2 + v 2

2

ν(1− ρ2)

)−(1+ ν
2 )

dv2dv1,

where t−1
ν is the univariate Student’s t quantile function with

the degrees of freedom ν, and ρ is the correlation coefficient if
ν > 2.
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The t copula degenerates to a normal copula as ν →∞.
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The Gumbel copula

If Fy is Gumbel’s type-B bivariate extreme value distribution
with the parameter ϑ ∈ (0, 1], then (2) becomes the Gumbel
copula:

CG (u1, u2;ϑ) = exp

[
−

(
(− ln u1)

1
ϑ + (− ln u2)

1
ϑ

)ϑ
]
.
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The Gumbel-survival copula

Given a copula C , we can define the corresponding survival
copula:

C s(u1, u2) = u1 + u2 − 1 + C (1− u1, 1− u2).

By setting C = CG , the resulting C s becomes the
Gumbel-survival copula:

C s
G (u1, u2;ϑs) = u1 + u2 − 1 + CG (1− u1, 1− u2;ϑs)

that has the parameter ϑs ∈ (0, 1]. The Gumbel-survival
copula density is “mirror-symmetric” to the Gumbel copula
density.
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Cross-dependence measures

Beside the independent copula that implies no
cross-dependence, various copulae imply various
cross-dependence structures. Therefore, choosing a suitable
copula should be quite important for the
parametric-copula-based studies.

To classify and to quantify the cross-dependence structures
implied by various copulae, we have to define the associated
cross-dependence measures.
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Concordance and tail-dependence may be two most
cross-dependence structures of a copula.
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Concordance

A pair of uniform random variables is said to be
concordant (dis-concordant) if their observations tend to
cluster around the 45o (-45o) line: u1 = u2 (u1 = 1− u2).
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Kendall’s tau

Instead of using Pearson’s correlation coefficient, the copula
literature often measures the concordance by using Kendall’s
tau:

τ = 4

∫∫
[0,1]2

C (u1, u2)dC (u1, u2)− 1. (4)

Similar to the correlation coefficient (ρ), Kendall’s tau is
always bound in [-1,1]. Its sign represents the direction of
concordance (positive for concordance and negative for
dis-concordance), and its magnitude indicates the strength of
concordance (or dis-concordance).
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I It is quite easy to see that CI implies τ = 0 (no
concordance).

I It is also known that for the copulae CN and Ct ,

τ =
2

π
arcsin(ρ) (5)

is a monotone transformation of ρ.

I For CG ,
τ = 1− ϑ

must be non-negative. Therefore, unlike the normal and t
copulae, CG and C s

G are unable to interpret the structure
of dis-concordance.
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Quantile-exceedances (Tail events)

The tail-dependence measures assess the probabilities of the
lower-u tail event:

AiL(u) = {uit | uit < u} , u ∈ (0, 0.5],

and the upper-u tail event:

AiU(u) := {uit | uit ≥ u} , u ∈ [0.5, 1).
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These two tail events are, respectively, equivalent to the
following “quantile-exceedance” sets:

AiL(u) =
{
yit

∣∣ yit < F−1
i (u)

}
, u ∈ (0, 0.5],

and

AiU(u) =
{
yit

∣∣ yit ≥ F−1
i (u)

}
, u ∈ (0, 0.5].
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In financial applications, unlike Kendall’s tau that measures
the cross-dependence between markets in “normal” states,
these tail-dependence measures can be used to characterize
the the cross-dependence between markets at certain
“downside” and “upside” states and therefore are particularly
useful for risk management.
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Given the tail events, we can define the lower-u
tail-dependence measure as the conditional probability:

λL(u) := IP(A1L(u)|A2L(u)) =
C (u, u)

u
, u ∈ (0, 0.5],

and the upper-u tail-dependence measure as the conditional
probability:

λU(u) := IP(A1U(u)|A2U(u)) =
C s(1− u, 1− u)

1− u
, u ∈ [0.5, 1).

The Fréchet-Hoeffding inequality implies that the measures:
λL(u) and λU(u) are always bounded in [0,1] for any copula C .

Yi-Ting Chen, IEAS Copula Analysis



Given the tail events, we can define the lower-u
tail-dependence measure as the conditional probability:

λL(u) := IP(A1L(u)|A2L(u)) =
C (u, u)

u
, u ∈ (0, 0.5],

and the upper-u tail-dependence measure as the conditional
probability:

λU(u) := IP(A1U(u)|A2U(u)) =
C s(1− u, 1− u)

1− u
, u ∈ [0.5, 1).
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The lower-u tail events are independent if, and only if,
λL(u) = u; that is,

IP(A1L(u)|A2L(u)) = IP(A1L(u)).

On the other hand, the upper-u tail events are independent if,
and only if, λU(u) = 1− u.
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Given λL(u) and λU(u), we can further define the lower
“extreme-values” dependence:

λ∗L := lim
u→0+

λL(u)

and the upper extreme-values dependence:

λ∗U := lim
u→1−

λU(u);

see, e.g., Joe (1997).

Some studies refer to a copula with λ∗L = 0 (λ∗U = 0) as a
“lower-tail-independent” (an “upper-tail-independent”)
copula. However, this terminology ignores the fact that the
tail events are not the same as the extreme events.
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It is known that

1. CN implies λ∗L = λ∗U = 0,

2. CG implies λ∗L = 0 and 0 ≤ λ∗U = 2− 2ϑ < 1,

3. C s
G implies 0 ≤ λ∗L = 2− 2ϑs < 1 and λ∗U = 0,

4. Co = Ct implies
λ∗L = λ∗U = 2tν+1

(
−
√
ν + 1

√
1− ρ/

√
1 + ρ

)
;

see, e.g., Embrechts, Lindskog, and McNeil (2003) and
Schmidt (2004).
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However, as shown by Figures 1 and 2, λL(u)− u and
λU(u)− (1− u) are all positive, if u 6= 0 and u 6= 1, for CN ,
CG , C s

G , and Ct . In other words, these copulae are all
tail-dependent.
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τ = 0.7

τ = 0.2

CG

CN

Cs
G

Ct

Figure 1. The differences: λL(u)− u implied by CN , Ct, CG, and Cs
G.
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τ = 0.7

τ = 0.2

CG

CN

Cs
G

Ct

Figure 2. The differences: λU (u)− (1− u) implied by CN , Ct, CG, and Cs
G.
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Copula density function

From (2), we can define the copula density function:

c(u1, u2, . . . , un) :=
∂n

∂u1∂u2 . . . ∂un
C (u1, u2, . . . , un)

=
fy(F

−1
1 (u1),F

−1
2 (u2), . . . ,F

−1
n (un))∏n

i=1 fi(F
−1
i (ui))

,

where fi and fy are, respectively, the probability density
function of Fi and Fy.

The independent, normal, Gumbel, t, and any other copula
density functions can be easily derived in accordance with this
formula.
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Independent copula
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Normal copula (lower concordance, τ = 0.2)
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Normal copula (higher concordance, τ = 0.7)
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Gumbel copula (lower concordance, τ = 0.2)
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Gumbel copula (higher concordance, τ = 0.7)
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Characteristics

These figures show that

I CN and CG both have a higher density at the 45o line,

I the clustering tendency of the lower-u (upper-u) tail
events increases as u → 0+ (u → 1−),

I this clustering tendency increases with the strength of
concordance,

I cN(u, u; ρ) is symmetric to u = 0.5,

I cG (u, u;ϑ) is asymmetric to u = 0.5 and has a heavier
upper tail.
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The L, U, and J dependence

I In accordance with the shape of cN and cG at the 45o

line, Hu (2006) referred to CN and CG as copulae with
the “U-shaped” and “J-shaped” dependence structures,
respectively.

I Because c s
G is mirror-symmetric to cG about the line:

u1 = 1− u2 when ϑ = ϑs . By this mirror-symmetry, it
should be understood that C s

G is a copula with the
“L-shaped” dependence structure (heavier lower tail).

I Similar to the normal copula, the t copula also has an
“U-shaped” dependence.

I This illustrates that tail-dependence is much more
important than concordance in discriminating between
different parametric copulae.
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The true copula is unknown

In practice, the true copula and the true marginal distributions
are unknown. This generates the issues on how to specify
copula, how to estimate copula, and how to test copula.
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Existing approaches

Under the assumption that {yt} is an i.i.d. sequence, there is
a parametric approach that deals with these issues by

I specifying certain parametric (marginal distributions and)
copulae,

I estimating the parameters of (the marginal distributions
and) the copulae by the maximum likelihood (ML)
method, either in an one-stage way or in a two-stage way,

I evaluating the copula models

1. the AIC’s,
2. the uniformity of “conditional copulae” (the

derivatives of the copula taken with respect to its
margins) and the Kolmogorov test or the Pearson χ2

test.
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There is also a semi-parametric approach that replaces the
parametric marginal distributions with the empirical
distributions.

I Genest et al. (1995) is a well-known paper on this
approach that derives the asymptotic variance-covariance
matrix of the two-stage (semi-parametric) MLEs.
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Stylized facts of data

The above-mentioned parametric and semi-parametric
approaches are quite popular in empirical finance.
Nevertheless, the i.i.d. assumption of {yt} is obviously
improper for financial data.

I It is well-recognized that stock returns have volatility
clustering, leverage effects, and other stylized facts.

I Ignoring such serial dependence structures, the marginal
distributions and hence the resulting copula models are
unlikely to be correctly specified.

I It is crucial to deal with these problems for analyzing the
cross-dependence structures in an adequate way.
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Connecting copula and GARCH

Motivated by the above-mentioned problems, Hu (2006),
Jondeau and Rockinger (2006), and Patton (2006a,b)
suggested replacing the unconditional marginal distributions
with the conditional marginal distributions that are based on
certain univariate GARCH-type models.

Their models are special cases of the generalized copula-based
multivariate dynamic (CMD) model that we discuss below.
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A dynamic location-scale specification

Denote

I I t−1
i : the information set generated by
Y t−1

i := (yi ,t−1, yi ,t−2, . . .) and some pre-determined
variables at time t,

I It−1 := (I t−1
1 , I t−1

2 , . . . , I t−1
n ).

We base the CMD model on the dynamic location-scale
specification:

yt = mt(xt ,α) + ht(xt ,α)1/2εt , α ∈ A ⊂ Ra, (6)
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in which

I xt is a vector of It−1-measurable random variables,

I mt := mt(xt ,α) is a n × 1 vector with the ith element
mit := mit(xt , αi),

I ht := ht(xt ,α) is a n × n “diagonal matrix” with the ith
diagonal term hit := hit(xt , αi),

I α := (α>1 , α
>
2 , . . . , α

>
n )> is an a × 1 parameters vector in

the parameters space A, αi ∈ Ai ⊂ Rai is an ai × 1
parameters vector, and a =

∑n
i=1 ai ;

I εt := (ε1t , ε2t , . . . , εnt)
> is the standardized errors vector

with εit := h
−1/2
it (yit −mit), IE[εit ] = 0, and var[εit ] = 1.
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The marginal models

By combing (6) with the conditional (standardized
error) distribution assumption:

I εit |xt has the conditional distribution Fεi
(·|xt ; βi) with a

bi × 1 parameters vector βi ∈ Bi ⊂ Rbi and the
conditional probability density function:

fεi
(ε|xt ; βi) :=

∂

∂ε
Fεi

(ε|xt ; βi), ∀ ε ∈ R,
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we can obtain a set of fully specified marginal models:

Fyi
(y |xt ; γi) := Fεi

(
h
−1/2
it (y −mit)

∣∣∣ xt ; βi

)
, ∀ y ∈ R,

(7)
with the parameters vector γi := (α>i , β

>
i )> ∈ Γi ⊂ Rai+bi ;

i = 1, 2, . . . , n. Hereafter, we also denote
β := (β>1 , β

>
2 , . . . , β

>
n )> ∈ B ⊂ Rb and b :=

∑n
i=1 bi .
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The CMD model

By coupling the marginal models with the copula model
C (·|xt ; θ), a generalized parametric CMD model is derived:

Fy(y|xt ;λ) := C (Fy1(y1|xt ; γ1), . . . ,Fyn(yn|xt ; γn)| xt ; θ) ,
(8)

where λ := (γ>, θ>)> is a (a + b + r)× 1 vector of parameters
with γ := (α>,β>)>.
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The constant conditional correlation (CCC) model of
Bollerslev (1990) and the dynamic conditional
correlation (DCC) models of Engle (2002) and Tse and
Tsui (2002) are also special case of this CMD model where
the Fyi

’s and C are both “normal”.
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The key feature of this CMD model is that the parameter
vectors γi ’s are separable for different i ’s. This permits us to
present the marginal models as a set of univariate
GARCH-type models conditional on the same information set
It−1. Accordingly, we can estimate the γi ’s separately before
the copula analysis.
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As demonstrated by Bauwens, Laurent, and Rombouts (2006,
Section 2.3), the CCC (or DCC) model and the copula-based
models of Jondeau and Rockinger (2006) and Patton (2006a)
are in the same sub-class of multivariate GARCH-type models
obtained by certain nonlinear combinations of univariate
GARCH-type models. This interpretation applies to the
generalized CMD model (94).
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In comparison, the VEC model of Bollerslev, Engle, and
Wooldridge (1988) and the BEKK model of Engle and
Kroner (1995) are other types of multivariate GARCH-type
models that may not have completely separable parameters for
various i ’s.
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This difference makes the CCC and DCC models much easier
to estimate than the VEC and BEKK models; see, e.g., Engle
and Sheppard (2001), Engle (2002), and Tse and Tsui (2002).
In addition to this advantage, the CMD model can also be
flexibly applied to explore the cross-dependence structures
using various C ’s.
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Dynamic copulae

The static copulae can be easily extended to being the
dynamic copulae by re-specifying their parameters as certain
dynamic functions of xt , as in Jondeau and Rockinger (2006)
and Patton (2006a).
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By replacing the CCC coefficient ρ of CN(u1, u2; ρ) with the
DCC coefficient ρt = ρt(xt ; θ), such as that of Tse and
Tsui (2002):

ρt = (1−κ1−κ2)κo+κ1ρt−1+κ2

∑m
k=1 ε1,t−kε2,t−k√(∑m

k=1 ε
2
1,t−k

) (∑m
k=1 ε

2
2,t−k

) ,
(9)

where −1 ≤ κo ≤ 1, 0 ≤ κ1 ≤ 1, 0 ≤ κ2 ≤ 1, κ1 + κ2 ≤ 1,
and m = 2, we can define the dynamic normal copula
CN(u1, u2|xt ; θ).
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By using the dynamic parameters ϑt = 1− 2
π

arcsin(ρt) and
ϑs,t = 1− 2

π
arcsin(ρt) in place of the parameters ϑ and ϑs of

the static CG and C s
G , we can also define the dynamic Gumbel

copula CG (u1, u2|xt ; θ) and the dynamic Gumbel-survival
copula C s

G (u1, u2|xt ; θ), respectively.
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Similarly, we can define the dynamic t copula Ct(u1, u2|xt ; θ)
by using the same ρt to replace the CCC coefficient ρ of
Ct(u1, u2; ρ, ν).
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By fixing the same ρt , these dynamic copulae have the same
dynamic Kendall’s tau τ(xt ; θ). However, they have different
tail-dependence structures characterized by the dynamic
lower-u tail-dependence measures

λL(u|xt ; θ) =
1

u
C (u, u|xt ; θ)

and the dynamic upper-u tail-dependence measures

λU(u|xt ; θ) =
1

1− u
C s(1− u, 1− u|xt ; θ).
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The conditional Sklar’s theorem

Denote

I F o
yi
(·|It−1): the true conditional distribution of yit |It−1,

I F o
y (·|It−1): the true conditional multivariate distribution

of yt |It−1.

The conditional Sklar theorem by Patton (2006a, IER):

I there exists a unique conditional copula
Co(·|It−1) : [0, 1]n → [0, 1] such that

F o
y (y|It−1) = Co

(
F o

y1
(y1|It−1), . . . ,F o

yn
(yn|It−1)

∣∣ It−1
)
,
(10)

for all y := (y1, y2, . . . , yn) ∈ Rn.
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Importantly, the univariate conditional distributions and the
conditional copula must have the “same” information set as
the multivariate conditional distribution. This is why we have
to specify the same information set It−1 for all the marginal
models and the copula model.
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Specification correctness conditions

By comparing the CMD model:

Fy(y|xt ;λ) := C (Fy1(y1|xt ; γ1), . . . ,Fyn(yn|xt ; γn)| xt ; θ) ,

with the conditional Sklar’s theorem:

F o
y (y|It−1) = Co

(
F o

y1
(y1|It−1), . . . ,F o

yn
(yn|It−1)

∣∣ It−1
)
,

it is clear that the CMD model is correctly specified for the
true conditional distribution F o

y (·|It−1), if
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1. the marginal models are correctly specified in the sense
that there exists some (unique) vector
γio := (α>io , β

>
io)

> ∈ Γi at which

Fyi
(·|xt ; γio) = F o

yi
(·|It−1), ∀ i = 1, 2, . . . , n,

2. the copula model is correctly specified in the sense that

C (·|xt ; θo) = Co(·|It−1), (11)

for some (unique) θo ∈ Θ.

In this study, we treat Condition 1 as a maintained
assumption, denoted as assumption [A], and focus on
proposing copula tests for Condition 2.
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The ML methods

Let c(·|xt ; θ) be the density function of C (·|xt ; θ). The
parameters of the CMD model may be estimated using
different ML methods.
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The one-stage ML method

λ̂T = argmaxλ

1

T

T∑
t=1

ln c (Fy1(y1|xt ; γ1), . . . ,Fyn(yn|xt ; γn)| xt ; θ) .
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The two-stage ML method

1. the 1st stage:

γ̂iT = argmaxγi

1

T

T∑
t=1

ln fyi
(yi |xt ; γi),

2. the 2nd stage:

θ̂T = argmaxθ

1

; γi
1



The three-stage ML method

1. the 1st stage:

α̂iT = argmaxαi
−1

2
ln 2π− 1

2T

T∑
t=1

ln hit−
1

2T

T∑
t=1

h−1
it (yit−mit)

2,

2. the 2nd stage:

β̂iT = argmaxβi

1

T

T∑
t=1

ln fεi
(ε̂it |xt ; βi), ε̂it := εit |α=α̂iT

3. the 3rd stage:

θ̂T = argmaxθ

1

T

T∑
t=1

ln c (Fy1(y1|xt ; γ̂1), . . . ,Fyn(yn|xt ; γ̂n)| xt ; θ) .
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Compared to the one-stage method, the multi-stage estimation
methods are much easier to implement when the CMD model
is complicated. Moreover, the latter is also consistent with the
“bottom-up” model-building procedure which is quite
important for building a fully specified parametric model in a
logically consistent way; see Wooldridge (1991, JE).
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The asymptotic variance-covariance matrix

These asymptotic variance-covariance matrices of the
two-stage and three-stage MLEs are quite different from that
of the one-stage MLEs. It should be careful in estimating the
asymptotic variance-covariance matrix and computing the test
statistics when a multi-stage estimation method is used. See
Patton (2006b, JAE) for the case of the two-stage MLEs.
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The three-stage MLEs

In the paper, we show that

I
√

T (α̂iT − αio)
d→ N(0,Σo

αi), Σo
αi := IE[ψo

α,itψ
o>
α,it ],

I
√

T (β̂iT − βio)
d→ N(0,Σo

βi), Σo
βi := IE[ψo

β,itψ
o>
β,it ],

I
√

T (θ̂T − θo)
d→ N(0,Σo

θ), Σo
θ := IE[ψo

θtψ
o>
θt ],
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The margingale-difference sequences

ψα,it =

{
IE[witw

>
it ] +

1

2
IE[zitz

>
it ]

}−1 {
witεit +

1

2
zit(ε

2
it − 1)

}
;

ψβ,it = IE[lβ,it l
>
β,it ]

−1 {lβ,it + ζo
itψα,it} ,

ψθt = IE[lθt l
>
θt ]
−1

{
lθt +

n∑
i=1

(
ξo
αiψα,it + ξo

βiψβ,it

)}
.

See also the Appendix of my paper for the notations.
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Testing

Because the cross-dependence structures of yt |It−1 are fully
characterized by the true, but unknown, copula function
Co(·|It−1), it is quite important to test the adequacy of
C (·|xt ; θ) in copula studies. Beside Chen, Fan, and
Patton (2004, working paper) that proposed a non-parametric
test, we find no other formal tests for the CMD model before
this study. Our tests are established in a parametric way.
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The conditional PITs

Denote the conditional PIT:

uit := Fyi
(yit |xt ; γi)

and the PIT vectors:

ut := (u1t , u2t . . . , unt)
>.

Given assumption [A], uot := (uo
1t , u

o
2t , . . . , u

o
nt)

> is a n × 1
vector of U(0, 1) random variables, where uo

it := uit |γi=γio
.
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The test functions

Let φt := φ(ut |xt ; θ) be a q × 1 vector of testing indicators.
Denote γo := (α>

o ,β
>
o )>, λo := (γ>o , θ

>
o )>, and φot := φt |λ=λo .

Suppose that the condition

IE[φot |It−1] = 0

is satisfied under the null hypothesis.
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The test functions

Let φt := φ(ut |xt ; θ) be a q × 1 vector of testing indicators.
Denote γo := (α>

o ,β
>
o )>, λo := (γ>o , θ

>
o )>, and φot := φt |λ=λo .

Suppose that the condition

IE[φot |It−1] = 0

is satisfied under the null hypothesis.
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For example, if the copula model has the same Kendall’s tau
as the true copula, then the condition IE[φot |It−1] = 0 is
satisfied for the following φ:

φτ (ut |xt ; θ) = 4C (ut |xt ; θ)− 1− τ(xt ; θ). (12)
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If the copula model has the same upper-u dependence
structure as the true copula, then the condition
IE[φot |It−1] = 0 is satisfied for

φU(u)(ut |xt ; θ) =
1

1− u
[I (u1t ≥ u)I (u2t ≥ u)]− λU(u|xt ; θ),

u ∈ [0.5, 1),
(13)

in which the indicator function: I (ε ≥ εo) = 1 if ε ≥ εo and
I (ε ≥ εo) = 0 if ε < εo , where ε, εo ∈ R.
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If the copula model has the same lower-u dependence
structure as the true copula, then the condition
IE[φot |It−1] = 0 is satisfied for

φL(u)(ut |xt ; θ) =
1

u
I (u1t < u)I (u2t < u)− λL(u|xt ; θ),

u ∈ (0, 0.5].

(14)
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We may also set the following 2p-dimensional φ:

φLU := (φL(v1), . . . , φL(vp), φU(1−vp), . . . , φU(1−v1))
>, (15)

for some vi ∈ (0, 0.5), vi < vi+1, and i = 1, 2, . . . , p, to check
the different tail-dependence measures at the same time.
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In what follows, we refer to the moment test with φ = φτ ,
φL(u), φU(u), and φLU as the Mτ test, the ML(u) test, the
MU(u) test, and the MLU test respectively. The Mτ test is a
concordance test, and the ML(u), MU(u), and MLU tests are
tail-dependence tests.
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Generalized first-order asymptotics

Our test checks the condition IE[φot ] = 0 by examining
whether the statistic

D̂T := T−1
T∑

t=1

φ̂t ,

where φ̂t := φt |λ=λ̂T
, is significantly different from zero.
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If φ is twice continuously differentiable, then we can apply the
standard Taylor expansion to show that

√
TD̂T =

1√
T

T∑
t=1

φot +

[
1

T

T∑
t=1

∇θ>φt

]
λ=λo

√
T (θ̂T − θo)

+
n∑

i=1

{[
1

T

T∑
t=1

pit∇γ>i
uit

]
λ=λo

√
T (γ̂iT − γio)

}
+ op(1),

(16)
where pit := ∂

∂uit
φt .
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Following the generalized first-order asymptotics of
Phillips (1991, ET), this result may also be applied to the φ’s
that are composed of the indicator function, such as φL(u) and
φU(u). This is due to the fact that, although the indicator
function is not differentiable in the ordinary sense, it is
“differentiable” in the following sense

∂

∂ε
I (ε ≥ εo) = δ(ε− εo),

where δ represents the Dirac delta function.
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Dirac delta

The Dirac delta function is a generalized function that can be
understood as the limit of a delta sequence, such as the limit
of the N(εo , σ

2) probability density functions sequence as
σ2 → 0+. That is, it may be viewed as the “density function”
of a degenerated distribution.
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This function has the sifting property (or said the reproducing
property): ∫

R
δ(ε− εo)µ(ε)dε = µ(εo), (17)

where µ denotes a continuous function; see Gelfand and
Shilov (1964), Bracewell (1999), and Kanwal (2004), among
others.
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The asymptotics of the concordance test is derived from (16).
The asymptotic null distributions of the tail-dependence tests
are derived from (16) and (17). See Section 3.2 for an
application of the sifting property.
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The moment test

The proposed test statistic is of the form:

MT := TD̂>
T Ω̂−1

T D̂T

where Ω̂T is a consistent estimator of the asymptotic
variance-covariance matrix of T 1/2D̂T :

Ωo = IE[ϕotϕ
>
ot ],

ϕot := φot + ηcoψ
o
θt +

n∑
i=1

ηioψ
o
γ,it , ψo

γ,it := (ψo>
α,it , ψ

o>
β,it)

>;

see Section 2 for the undefined notations.
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This test statistic has the standard asymptotic null
distribution:

MT
d→ χ2(q).

In the case where q = 1, we can also express the M test
statistic as M ′

T =
√

TD̂T/Ω̂
1/2
T . This statistic has the

asymptotic null distribution N(0, 1), and its sign may contain
some useful information about the discrepancy between the
true and postulated cross-dependence structures.
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Simulation

I The marginal models Fyi
(yi |xt ; γi) are specified to have

the AR(1) conditional mean mit = αmo + αm1yi ,t−1, the
GARCH(1,1) conditional variance
hit = αho +αh1hi ,t−1 +αh2(yi ,t−1−mi ,t−1)

2, and the i.i.d.
N(0, 1) standardized error εit for both i = 1, 2.

I The marginal models are set to be correctly specified in
the sense of assumption [A] with
(αmo , αm1, αho , αh1, αh2) = (0.01, 0.05, 0.05, 0.85, 0.1).
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I The CMD model being tested is of the form:

Fy(y|xt ;λ) = C (Fy1(y1|xt ; γ1),Fy2(y2|xt ; γ2); θ) .

I The copula model: C = CI and the static CN .

I The true copula: CI , CN , CG , and Ct with the static
parameter ρ = 0.1 and 0.5 (or equivalently the static
Kendall’s tau τ1 := 0.0638 and τ2 := 0.3317), where Ct

has the degrees of freedom ν = 4.

I Sample size: T = 500, 1000, 2500, 5% nominal level, one
thousand replications.

I The Mτ test, the MLU test with
(v1, v2, v3, 1− v3, 1− v2, 1− v1) =
(0.1, 0.3, 0.5, 0.5, 0.7, 0.9), and the associated ML(u) and
MU(u) tests.
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The Mτ test

Table: Empirical sizes and powers of the Mτ test.

Ho : Co = CI Ho : Co = CN

Co T =500 1000 2500 T =500 1000 2500

CI 8.1 7.4 6.6 7.0 6.8 7.9
CN (τ1) 43.8 68.7 95.8 6.8 8.5 7.6
CN (τ2) 100.0 100.0 100.0 7.6 8.4 7.5
CG (τ1) 43.4 70.8 96.6 7.5 6.7 8.3
CG (τ2) 100.0 100.0 100.0 7.3 9.3 7.2
Ct (τ1) 38.2 61.2 94.6 6.4 8.1 5.8
Ct (τ2) 100.0 100.0 100.0 7.8 9.2 9.4

Notes: The bold entries represent the empirical sizes in percentages,
and the others are the empirical powers in percentages.
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The ML(u), MU(u), and MLU tests

Table: Empirical sizes of the tail-dependence tests.

Ho : Co = CI Ho : Co = CN

Co test T =500 1000 2500 T =500 1000 2500

MLU 10.9 6.6 5.6 8.2 8.1 6.5
ML(0.1) 10.1 6.2 6.0 7.4 6.0 5.5
ML(0.3) 5.5 4.7 5.4 5.8 4.3 5.9

CI ML(0.5) 6.5 5.7 5.7 5.6 5.2 4.9
MU(0.5) 5.2 5.9 4.6 6.5 5.2 5.6
MU(0.7) 5.5 6.6 5.8 4.2 4.2 5.2
MU(0.9) 11.6 6.3 5.0 7.6 6.6 4.8
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Table: Empirical sizes and powers of the tail-dependence tests.

Ho : Co = CI Ho : Co = CN

Co test T =500 1000 2500 T =500 1000 2500

MLU 19.1 38.1 86.0 7.3 7.1 5.6
ML(0.1) 8.4 12.1 34.3 5.4 4.5 5.1
ML(0.3) 20.5 34.2 70.6 5.0 5.0 5.0

CN (τ1) ML(0.5) 21.2 36.7 69.1 5.2 6.1 5.7
MU(0.5) 17.6 32.1 68.1 5.1 6.2 5.8
MU(0.7) 18.8 33.7 69.9 5.5 6.0 5.1
MU(0.9) 9.5 13.1 33.6 5.7 6.6 5.2
MLU 100.0 100.0 100.0 6.2 6.3 4.9
ML(0.1) 96.8 99.9 100.0 6.9 5.3 3.8
ML(0.3) 100.0 100.0 100.0 5.8 5.6 4.9

CN (τ2) ML(0.5) 100.0 100.0 100.0 5.3 5.6 5.8
MU(0.5) 100.0 100.0 100.0 5.0 6.0 5.4
MU(0.7) 100.0 100.0 100.0 4.0 5.9 6.5
MU(0.9) 96.1 100.0 100.0 5.2 5.5 5.0
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Table: Empirical powers of the tail-dependence tests.

Ho : Co = CI Ho : Co = CN

Co test T =500 1000 2500 T =500 1000 2500

MLU 24.6 52.6 97.1 8.4 12.8 25.9
ML(0.1) 7.1 7.1 18.8 9.8 8.6 10.8
ML(0.3) 12.7 23.8 52.0 6.5 9.5 10.6

CG (τ1) ML(0.5) 18.6 33.4 65.2 4.7 5.4 5.5
MU(0.5) 18.3 31.8 65.1 5.3 6.3 6.0
MU(0.7) 29.9 52.0 88.3 5.9 7.8 9.2
MU(0.9) 24.5 48.5 92.8 9.5 16.5 42.9
MLU 100.0 100.0 100.0 45.4 79.3 99.8
ML(0.1) 77.5 97.5 100.0 19.9 34.5 70.6
ML(0.3) 100.0 100.0 100.0 15.9 23.2 47.7

CG (τ2) ML(0.5) 100.0 100.0 100.0 4.6 5.9 5.7
MU(0.5) 100.0 100.0 100.0 5.7 5.9 6.2
MU(0.7) 100.0 100.0 100.0 18.4 31.1 65.2
MU(0.9) 100.0 100.0 100.0 50.4 85.0 99.5
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Table: Empirical powers of the tail-dependence tests.

Ho : Co = CI Ho : Co = CN

Co test T =500 1000 2500 T =500 1000 2500

MLU 43.7 88.7 100.0 22.8 61.5 99.1
ML(0.1) 40.3 72.7 99.2 17.9 38.0 84.8
ML(0.3) 31.4 54.3 93.0 8.6 8.3 14.9

Ct (τ1) ML(0.5) 23.1 35.0 70.7 7.1 6.1 5.8
MU(0.5) 18.2 31.4 67.0 5.5 6.2 5.8
MU(0.7) 31.2 53.5 92.6 7.8 10.0 16.1
MU(0.9) 41.7 71.6 98.9 18.7 41.2 84.6
MLU 100.0 100.0 100.0 19.2 37.3 89.2
ML(0.1) 99.4 100.0 100.0 14.1 24.5 63.6
ML(0.3) 100.0 100.0 100.0 7.2 8.9 14.2

Ct (τ2) ML(0.5) 100.0 100.0 100.0 6.4 5.0 7.6
MU(0.5) 100.0 100.0 100.0 5.0 5.9 5.5
MU(0.7) 100.0 100.0 100.0 7.3 8.5 15.3
MU(0.9) 99.7 100.0 100.0 14.2 27.0 61.8
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Main results

I The empirical sizes are close to the 5% nominal level for
all the continuously differentiable the discrete test
functions, provided that the sample size is suffciiently
large.

I In testing CN against Co = CG , we see a “J-shaped”
power performance which is consistent with the
dissimilarity between the J-shaped dependence of
Co = CG and the U-shaped dependence of CN .

I In testing CN against Co = Ct , we see an “U-shaped”
power performance which is consistent with the
symmetric lower- and upper-extreme-values dependence
of Co = Ct that cannot be interpreted by CN .
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Main results

I This shows that the proposed tail-dependence tests are
quite useful in shedding light on the possible directions of
copula mis-specification.

I This property is important because Co is unknown in
practical applications and we have to identify the possible
causes of mis-specification before re-specifying the
mis-specified copula model.

I This simulation also shows that the information of
tail-dependence is much more important than the
concordance in discriminating between competing copula
models.
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Empirical study

I In this empirical study, we apply the concordance and
tail-dependence tests to explore stock market
relationships.

I Copula models: bivariate CN , CG , C s
G , and Ct (and

trivariate CN and Ct).

I If the true copula has the L-shaped (J-shaped)
dependence, then the cross-dependence of downside
markets is stronger (weaker) than that of the upside
markets.
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Designs and issues

I By contrast, if the true copula is of the U-shaped
dependence, then there will be no such asymmetry.

I This asymmetry (symmetry) is conceptually very close to
the correlation asymmetry (symmetry), studied by Longin
and Solnik (2001) and Ang and Chen (2002), which is
known to have important implications for portfolio
diversification and risk management.
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Data

I Stock index (Pit in the local currency):

1. the U.S.: Standard & Poor 500 (SP)
2. the U.S.: Russell 2000 (RS)
3. the U.K.: Financial Times Stock Exchange 100 (FT)
4. France: Compagnie des Agents de Change 40 (CA)
5. Japan: Nikkei 225 (NK)
6. Hong Kong: Hang Seng (HS)
7. Taiwan: Taiwan weighted (TW)

Yi-Ting Chen, IEAS Copula Analysis



I Sampling period: January 1, 1995 – December 31, 2003.

I We consider the daily returns:

yit = 100× (ln Pit − ln Pi ,t−1),

where t denotes the t-th “common” calendar trading
date of these markets in the sample. The sample size is
T = 1915.
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I Twenty-one pairs of returns yt = (y1t , y2t):

1. the U.S. returns: SP-RS,
2. the U.S.-European returns: SP-FT, SP-CA, RS-FT,

RS-CA,
3. the European returns: FT-CA,
4. the Asian returns: NK-HS, NK-TW, and HS-TW,
5. the U.S.-Asian returns: SP-NK, SP-HS, SP-TW,

RS-NK, RS-HS, and RS-TW,
6. the European-Asian returns: FT-NK, FT-HS,

FT-TW, CA-NK, CA-HS, and CA-TW.
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Please see my paper, entitled “Moment-based Copula Tests for
Financial Returns,” for the tables that are not reported here.
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Building the marginal models

1. Test the serial independence of {yit} against serial
correlation, volatility clustering, and time irreversibility.

I Most return series are likely to be serially correlated,
volatility-clustered, and time irreversible. The case of
NK is the only exception that has volatility clustering
but serial uncorrelatedness and time reversibility.
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2. Fitting the AR-GARCH and AR-EGARCH models of
“yit |I t−1

i ” and diagnosing these models by using the
“estimation-effect-corrected” serial correlation, volatility
clustering, and time irreversibility tests, as in Chen (2003,
2007).

I NK1 is the only case that has the GARCH specification
and the other cases all have the EGARCH specification.

I The diagnostic tests accept that these GARCH-type
models can successfully interpret the serial dependence
of yit |I t−1

i for all the return series.
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3. Extending the “yit |I t−1
i ” model to being the “yit |It−1’

’model.
I This extension is quite important but often overlooked

by practitioners. Patton (2006, IER) is an important
exception that emphasizes the role of this extension in
applying the conditional Sklar’s theorem.

I For the return combination (yit , yjt), we first check
whether the conditional mean and variance of yit |I t−1

i is
correlated to I t−1

j by using the causality tests of Cheung
and Ng (1996, JE).
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I Then, we extend the “yit |I t−1
i ” model by adding suitable

yj ,t−k ’s (and y2
j ,t−k ’s) into the conditional mean (and

variance) of the original model.
I Finally, we accept the “yit |It−1” models that cannot be

rejected by the serial correlation, volatility clustering,
time irreversibility, and causality tests.

I Importantly, recall that It−1 = (I t−1
i , I t−1

j ), therefore the

“yit |It−1” model may change with different I t−1
j being

considered. This is likely one of the most complicated
things for a correct copula analysis in empirical finance.
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The marginal models

The selected “yit |It−1” models:

1. the U.S. returns: SP1-RS1,

2. the U.S.-European returns: SP1-FT2, SP1-CA2,
RS1-FT3, RS1-CA3,

3. the European returns: FT1-CA1,

4. the Asian returns: NK1-HS1, NK1-TW1,

5. the U.S.-Asian returns: SP1-NK2, SP1-HS2, SP1-TW2,
RS1-NK3, RS2-HS3, and RS1-TW3,

6. the European-Asian returns: FT1-NK4, FT1-HS4,
FT1-TW4, CA1-NK5, CA1-HS5, and CA1-TW5.

7. The combination (HS, TW) is the only exception that we
cannot find the suitable yit |It−1 model’s.
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I To complete the fully specified yit |It−1 models, we assume
that the standardized errors of these models have the
(fixed) skewed t distributions, see Hansen (1994). This
assumption is accepted by Bai’s (2003) distribution test.

I Finally, the marginal models are conditional skewed-t
distributions with certain GARCH-type conditional mean
and variance on the information set It−1.
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Building the marginal models

Given the above-mentioned marginal models, we can obtained
the PIT estimates by introducing the returns into the fitted
conditional skewed t distributions, and implement the copula
analysis by using these PITs.
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We first check the null of independent copula. This is
analogue to testing the null of serial independence as the first
step in the time series analysis. Not surprisingly, this
hypothesis is strongly rejected by the copula tests.
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Static or dynamic copulae to use?

I We first check the null of CCC by using the test of Bera
and Kim (2002, J. Empirical Finance).

I Then, we fit static (dynamic) copulae to the PIT
combinations if the null of CCC is not rejected (is
rejected).

I The dynamic copulae are assume to have the DCC of Tse
and Tsui (2002) as discussed previously.

I We estimate the static and dynamic copulae by using the
three-stage ML method; see Tables 10 and 11 for the
MLEs.
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Empirical findings

The Mτ test statistic becomes insignificant for all the
combinations, regardless of whether CN , CG , C s

G , or Ct is
being tested.

This demonstrates that these bivariate copulae are all capable
of interpreting the concordance structure of the return
combinations captured by the positive and significant Mτ test
statistics for the null of Co = CI .
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The normal copula sharply outperforms the Gumbel and
Gumbel-survival copulae.

I The MLU , ML(u), and MU(u) tests accept the null of
Co = CN for sixteen out of the twenty return
combinations; the only exceptions include SP1-FT2,
SP1-CA2, RS1-TW3, and FT1-CA1.

I By contrast, the null of Co = CG is accepted by all these
tests for only three return combinations: SP1-NK2,
SP1-TW2, and CA1-TW5.

I The null of Co = C s
G is accepted by all these tests for

seven return combinations: SP1-NK2, SP1-HS2,
SP1-TW2, RS2-HS3, FT1-TW4, CA1-TW5, and
NK1-TW1.
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Moreover, the tail-dependence tests are unable to reject the
null of Co = Ct for all the return combinations considered.

Accordingly, we may characterize the cross-dependence
structures of these return combinations (most of these
combinations) by using the t copula (the normal copula).
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Because CN and Ct are both of the U-shaped dependence, this
implies that the co-movements of these stock markets will be
further strengthened in turbulent periods. Moreover, this
structure should symmetrically hold for both the downside and
upside markets, and hence does not support the hypothesis of
“correlation asymmetry”. We find a similar result in the
trivariate copula analysis.
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We find that the Gumbel (Gumbel-survival) copula tends to
under-estimate (over-estimate) the lower tail-dependence but
to over-estimate (under-estimate) the upper tail-dependence
for large |u|’s in this empirical study. Interestingly, this test
result is consistent with the dissimilarity between the
J-shape (L-shape) dependence implied by the
Gumbel (Gumbel-survival) copula being rejected and the
U-shaped dependence implied by the normal (or t) copula
being accepted.
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This demonstrates that the ML(u) and MU(u) tests are useful in
identifying the directions of copulae mis-specifications, as
shown in the simulation.
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Future Directions

I Testing: Dynamic misspecification.

I Specification: Maximum entropy + copula,
High-dimensional copula.

I Out-of-sample: Forecasting + Cross-dependence.

I Applications: Macroeconomic time series, International
business cycle, . . ..
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Thank You.
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